Uzbek Mathematical Journal 2025, Volume 69, Issue 4, pp.53-69 DOI: 10.29229/uzmj.2025-4-7

Complete systems of invariants of m-tuples for fundamental groups of a two-dimensional bilinear-metric space over the field of rational numbers

Beshimov G. R.

Abstract. Let Q be the field of rational numbers and Q^2 be the 2-dimensional linear space over Q. A classification of all non-degenerate symmetric bilinear-metric forms over Q^2 have obtained. Let φ be a non-degenerate symmetric bilinear form on Q^2 . Denote by $O(2, \varphi, Q)$ the group of all φ -orthogonal (that is the form φ preserving) transformations of Q^2 . Put $MO(2, \varphi, Q) = \{F: Q^2 \to Q^2 \mid Fx = gx + b, g \in O(2, \varphi, Q), b \in Q^2\}$, $SO(2, \varphi, Q) = \{g \in O(2, \varphi, Q) | detg = 1\}$ and $MSO(2, \varphi, Q) = \{F \in M(2, \varphi, Q) | detg = 1\}$. The present paper is devoted to solutions of problems of G-equivalence of g-invariants of g-invariants

Keywords: Invariant of *m*-tuple; *m*-point invariant.

MSC (2020): 14L24, 15A63, 15A72.

1. Introduction

Let N be the set of all natural numbers and $m \in N, m \ge 1$. Denote by $(Q^2)^m$ the set of all m-tuples (u_1, u_2, \ldots, u_m) in Q^2 , where $u_i \in Q^2, \forall i = 1, 2, \ldots, m$.

Let V be a finite dimensional vector space over a field B and ϕ be a bilinear form on V. Denote by $O(\phi, V)$ the group of all ϕ -orthogonal (that is the form ϕ preserving) transformations of V. Let $MO(\phi, V)$ be the group generated by the group $O(\phi, V)$ and all translations of V. In the paper [5], for the orthogonal group $O(\phi, V)$ in the Euclidean, spherical, hyperbolic and de-Sitter geometries, the orbit of m vectors is characterized by their Gram matrix and an additional subspace. In the book [1, Proposition 9.7.1], for the group $MO(\phi, V)$ in the Euclidean geometry, the orbit of m vectors is characterized by distances between m-vectors. A complete system of relations between elements of this complete system is also given in [1, Theorem 9.7.3.4]. In the paper [7], a complete system of invariants of m-tuples in the two-dimensional pseudo-Euclidean geometry of index 1 and a complete system relations between the obtained complete system of invariants are given. In the paper [8], a complete system of invariants of m-tuples in the one-dimensional projective space and a complete system relations between the obtained complete system of invariants are given. Invariants of m-points appear also in the theory of invariants of Bezier curves ([3], [19]. Complete systems of invariants for various geometric and topological settings have been developed in a series of works. In [9], the authors construct complete systems of invariants for m-tuples associated with the fundamental groups of the two-dimensional Euclidean space. The study in [10] presents complete systems of Galilean invariants describing the motion of parametric figures in three-dimensional Euclidean space. In [11], the authors investigate global invariants of topological figures in the two-dimensional Euclidean space, focusing on properties preserved under continuous deformations. Similarly, in [12], global invariants of objects are analyzed in the context of the two-dimensional Minkowski space, taking into account the Lorentzian structure. The papers [13] and [14] extend the study of invariants to immersions into n-dimensional affine manifolds and to mappings from arbitrary sets into the two-dimensional Euclidean space, respectively. Invariants of m-vectors in Lorentzian geometry are considered in [20], where algebraic invariants under Lorentz transformations are analyzed. Moreover, the concept of m-vector invariants appears prominently in applied disciplines such as computer vision ([16], [21]), where they are used for recognizing and comparing geometric configurations under affine or projective transformations, and in computational geometry ([18]), where such invariants aid in the analysis of shape and spatial relationships. General theory of m-point invariants considered in the invariant theory (see [2], [5], [6], [17], [23], [24]). This paper is a continuation of the paper [15]. The present paper is devoted to solutions of problems of G-equivalence of m-tuples in Q^2 for groups $G = O(2, \varphi, Q), SO(2, \varphi, Q), MO(2, \varphi, Q),$ $MSO(2,\varphi,Q)$. Complete systems of G-invariants of m-tuples in Q^2 for these groups are obtained.

1.1. A classification bilinear-metric spaces over the field of rational numbers.

Let Q be the field of rational numbers, Q^2 be the 2-dimensional linear space over Q and $\varphi(x,y)$ be a symmetric bilinear form on Q^2 .

If we replace the argument $y \in Q^2$ in the symmetric bilinear form $\varphi(x, y)$ by x, where $x = (x_1, x_2) \in Q^2$, we obtain the quadratic form $\varphi(x, x)$.

Theorem 1.1. (see [4], p.196) For every quadratic form $\varphi(x,x)$ on Q^2 , there exists a basis in Q^2 such that it has following form

$$\varphi(x,x) = \lambda_1 x_1^2 + \lambda_2 x_2^2$$

for some $\lambda_1, \lambda_2 \in Q$, where x_1, x_2 are the coordinates of the vector x in this basis.

In this case, there exist only following two cases: 1) $rank(\varphi(x,x)) = 1$ and 2) $rank(\varphi(x,x)) = 2$. In the case 1) $rank(\varphi(x,x)) = 1$, there exists a basis in Q^2 such that $\varphi(x,x)$ has following form: $\varphi(x,x) = \lambda_1 x_1$, where $\lambda_1 \in Q$ and $\lambda_1 \neq 0$.

Consider the case $rank(\varphi(x,x))=2$. In this case, there exists a basis e_1,e_2 in Q^2 such that $\varphi(x,x)$ has following form $\varphi(x,x)=\lambda_1x_1^2+\lambda_2x_2^2$, where $\lambda_1\in Q,\ \lambda_1\neq 0$ and $\lambda_2\in Q,\ \lambda_2\neq 0$. The equality $\varphi(x,x)=\lambda_1x_1^2+\lambda_2x_2^2$ implies following equality: $\varphi(x,x)=\lambda_1(x_1^2+\frac{\lambda_2}{\lambda_1}x_2^2)$. Since $\frac{\lambda_2}{\lambda_1}$ is a rational number, there are a,b integer numbers such that $\frac{\lambda_2}{\lambda_1}=\frac{a}{b}$. Then we have: $\varphi(x,x)=\lambda_1(x_1^2+\frac{a}{b}x_2^2)$.

We may then introduce a new basis e'_1, e'_2 by setting $e'_1 = e_1, e'_2 = be_2$, where b is the above integer number. This implies that the quadratic form $\varphi(x,x)$ can be written in this basis in the form $\varphi(x,x) = \lambda_1(x_1^2 + abx_2^2)$. We now consider the case of a positive rational number $a \cdot b$. If the prime factors of the product ab have a square of an integer, then we create $\varphi(x,x) = \lambda_1(x_1^2 + px_2^2)$ by introducing a new basis, where p = 1 or $p = p_1 \cdot p_2 \cdot ... \cdot p_n$ such that $p_j, j = 1, ..., n$, — prime numbers and $p_k \neq p_l$ for all $l \neq k, k = 1, ..., n, l = 1, ..., n$. As a result, there are infinitely non-congruent symmetric bilinear forms over the field of rational numbers and bilinear-metric spaces relatively.

1.2. A linear representation of the field $Q(\sqrt{-p})$ in two-dimensional linear space Q^2 .

Let Q be the field of rational numbers and p=1 or $p=p_1\cdot p_2\cdot ...\cdot p_n$, where p_j prime numbers and $p_k\neq p_l$ for all $k\neq l$. Denote by $Q(\sqrt{-p})$ the set $\{a+b\sqrt{-p}\mid a,b\in Q\}$. Let $a=a_1+\sqrt{-p}a_2\in Q(\sqrt{-p})$ and $b=b_1+\sqrt{-p}b_2\in Q(\sqrt{-p})$. We define addition and multiplication operations on $Q(\sqrt{-p})$ as follows: put $a+b=(a_1+\sqrt{-p}a_2)+(b_1+\sqrt{-p}b_2)=(a_1+b_1)+\sqrt{-p}(a_2+b_2)$. A multiplication in $Q(\sqrt{-p})$ define as follows: $a\circ b=(a_1+\sqrt{-p}a_2)\circ (b_1+\sqrt{-p}b_2)=(a_1b_1-pa_2b_2)+\sqrt{-p}(a_1b_2+a_2b_1)$. We will present the Propositions 1.2 - 1.9 mentioned in paper [15], as these propositions will be necessary for us

Proposition 1.2. The set $Q(\sqrt{-p})$ is a field with respect to the defined above addition a + b and multiplication $a \circ b$ operations.

Let $a = a_1 + \sqrt{-p}a_2$. We denote by M_a the matrix of the form $\begin{pmatrix} a_1 & -pa_2 \\ a_2 & a_1 \end{pmatrix}$. Let M(Q,p) denote the set of all matrices M_a , where $a \in Q(\sqrt{-p})$. We consider on the set M(Q,p) standard matrix operations: the component-wise addition and the multiplication operations of matrices. Then M(Q,p) is a field with the unit element, where the unit element is the unit matrix. The following proposition is obvious.

Proposition 1.3. The mapping $M: Q(\sqrt{-p}) \to M(Q, p)$, where $M: a \to M_a, \forall a \in Q(\sqrt{-p})$, is an isomorphism of fields $Q(\sqrt{-p})$ and M(Q, p).

For $a = a_1 + \sqrt{-p}a_2$, $b = b_1 + \sqrt{-p}b_2 \in Q(\sqrt{-p})$, we put $\langle a,b\rangle_p = a_1b_1 + pa_2b_2$. Then $\langle a,b\rangle_p$ is a bilinear form on $Q(\sqrt{-p})$ and $\langle a,a\rangle_p = a_1^2 + pa_2^2$ is a quadratic form on $Q(\sqrt{-p})$. For convenience, we denote by $\Psi(a)$ the quadratic form $\langle a,a\rangle_p$.

Proposition 1.4. Let $M: Q(\sqrt{-p}) \to M(Q,p)$ be the isomorphism $M: x \to M_x$ of fields $Q(\sqrt{-p})$ and M(Q,p). Then $\Psi(x) = \det(M_x)$ and $\Psi(x \circ y) = \Psi(x)\Psi(y)$ for all $x,y \in Q(\sqrt{-p})$.

For an arbitrary element $a = a_1 + \sqrt{-p}a_2 \in Q(\sqrt{-p})$, we set $W(a) = \overline{a} = a_1 - \sqrt{-p}a_2$.

Proposition 1.5. For an arbitrary element $a = a_1 + \sqrt{-p}a_2 \in Q(\sqrt{-p})$ following equalities hold: $a + \overline{a} = 2a_1, \langle a, a \rangle_p = a \circ \overline{a} = a_1^2 + pa_2^2 \in Q$.

Proposition 1.6. The function $\Psi(x)$ has the following properties:

- (1) $\Psi(\lambda x) = \lambda^2 \Psi(x), \ \forall \lambda \in Q, \forall x \in Q(\sqrt{-p});$
- (2) $\Psi(e) = 1$ for the unit element $e \in Q(\sqrt{-p})$;
- (3) $\Psi(x) = x \circ \overline{x} = \overline{x} \circ x \text{ hold for all } x \in Q(\sqrt{-p});$
- (4) $\Psi(x) = \Psi(Wx) = \Psi(\overline{x})$ hold for all $x \in Q(\sqrt{-p})$.

Proposition 1.7. Let $x \in Q(\sqrt{-p})$. Then the element x^{-1} exists if and only if $\Psi(x) \neq 0$. In the case $\Psi(x) \neq 0$, the equalities $x^{-1} = \frac{\overline{x}}{\Psi(x)}$ and $\Psi(x^{-1}) = \frac{1}{\Psi(x)}$ hold.

Put $Q^*(\sqrt{-p}) = \{x \in Q(\sqrt{-p}) \mid \Psi(x) \neq 0\}$. $Q^*(\sqrt{-p})$ is a group with respect to the multiplication operation \circ in the field $Q(\sqrt{-p})$. Denote by $M(Q^*,p)$ the set of all matrices M_a , where $a \in Q^*(\sqrt{-p})$. Consider elements $a = a_1 + \sqrt{-p}a_2 \in Q^*(\sqrt{-p})$ and $x = x_1 + \sqrt{-p}x_2 \in Q(\sqrt{-p})$ as column vectors $a = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$, $x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$. Let M_a be the matrix $\begin{pmatrix} a_1 & -pa_2 \\ a_2 & a_1 \end{pmatrix}$. Since $a \in Q^*\sqrt{-p}$, we have $\Psi(a) = a_1^2 + pa_2^2 \neq 0$ and $\Psi(a) = \det(M_a) \neq 0$.

Then the equality $a \circ x = (a_1 + \sqrt{-p}a_2) \circ (x_1 + \sqrt{-p}x_2) = (a_1x_1 - pa_2x_2) + \sqrt{-p}(a_1x_2 + a_2x_1)$ has the following form

$$a \circ x = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} \circ \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} a_1 x_1 - p a_2 x_2 \\ a_1 x_2 + a_2 x_1 \end{pmatrix} = \begin{pmatrix} a_1 & -p a_2 \\ a_2 & a_1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = M_a x, \tag{1.1}$$

where $M_a x$ is the multiplication of matrices M_a and x. Hence $M_a \in M(Q^*, p)$ and the mapping $M: Q^*(\sqrt{-p}) \to M(Q^*, p)$, where $M(a) = M_a$, is a linear representation of the group $Q^*(\sqrt{-p})$ in Q^2 .

Proposition 1.8. $M(Q^*, p)$ is a group with respect to the multiplication operation in the field M(Q).

Put
$$S(Q^*, \sqrt{-p}) = \{x \in Q(\sqrt{-p}) \mid \Psi(x) = 1\}$$
. It is a subgroup of the group $Q^*(\sqrt{-p})$.

Proposition 1.9. Let $M: Q(\sqrt{-p}) \to M(Q,p)$ be the isomorphism $M: x \to M_x$ of fields $Q(\sqrt{-p})$ and M(Q,p). Then $M(S(Q^*,\sqrt{-p}))$ is a subgroup of the group $M(Q^*,p)$ and the mapping $M: S(Q^*,\sqrt{-p}) \to M(Q^*,p)$, where $M(a) = M_a$ is a linear representation of the group $S(Q^*,\sqrt{-p})$ in Q^2 .

Let p=1 or $p=p_1\cdot p_2\cdot ...\cdot p_n$, where p_j prime numbers and $p_k\neq p_l$ for all $k\neq l$. The symmetric bilinear form $x_1y_1+px_2y_2$ denote by $\langle x,y\rangle_p$. Denote by Q_p^2 the 2-dimensional linear space Q^2 over Q with the bilinear form $\langle x,y\rangle_p=x_1y_1+px_2y_2$, where $x=(x_1,x_2),y=(y_1,y_2)\in Q^2$.

2. Fundamental groups of transformations of the 2-dimensional bilinear-metric space \mathbb{Q}^2

Definition 2.1. A mapping $F: Q(\sqrt{-p}) \to Q(\sqrt{-p})$ is called *p*-orthogonal if $\langle Fx, Fy \rangle_p = \langle x, y \rangle_p$ for all $x, y \in Q(\sqrt{-p})$.

We denote the set of all p-orthogonal transformations of Q^2 by O(2, p, Q). Let $I: Q^2 \to Q^2$ be the unit transformation $I(x) = x, \forall x \in Q^2$. Then $I \in O(2, p, Q)$. Let $T_1, T_2 \in O(2, p, Q)$ and $T_1 \cdot T_2 : Q^2 \to Q^2$ be such that $(T_1 \cdot T_2)(x) = T_1(T_2(x)), \forall x \in Q^2$. Then it is easy to see that $T_1 \cdot T_2 \in O(2, p, Q)$.

The following propositions are well known.

Proposition 2.2. O(2, p, Q) is a group with respect to the composition operation $T_1 \cdot T_2$, where $T_1, T_2 \in O(2, p, Q)$.

Proposition 2.3. ([25], p.221) Every p-orthogonal transformation of Q_p^2 is linear.

Let $x=(x_1,x_2)\in Q^2, y=(y_1,y_2)\in Q^2$. Denote the matrix of the bilinear form $\langle x,y\rangle_p=$ $x_1y_1 + px_2y_2$ by $\Delta_p = \|\delta_{ij}\|_{i,j=1,2}$, where $\delta_{11} = 1, \delta_{12} = \delta_{21} = 0, \delta_{22} = p$. By Proposition 2.3, we can consider an element of O(2, p, Q) as a 2×2 -matrix. Let $H \in O(2, p, Q)$, where $H = ||h_{ij}||_{i,j=1,2}$. Let H^T be the transpose matrix of H. It is known that the equality $\langle Hx, Hy \rangle_p = \langle x, y \rangle_p$ for all $x, y \in Q^2$ is equivalent to the equality

$$H^T \Delta_p H = \Delta_p. \tag{2.1}$$

The following proposition follows from the equation 2.1.

Proposition 2.4. Let $H \in O(2, p, Q)$. Then det(H) = 1 or det(H) = -1.

We denote by SO(2, p, Q) the set $\{H \in O(2, p, Q) : det(H) = 1\}$. SO(2, p, Q) is a subgroup of O(2,p,Q). $O(2,p,Q) = SO(2,p,Q) \cup \{HW \mid H \in SO(2,p,Q)\}$, where HW is the multiplication of matrices H and W, where $W = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$.

Theorem 2.5. (see [15]). The equality $SO(2, p, Q) = M(S(Q^*, \sqrt{-p}))$ holds.

Hence, we conclude from the above theorem that every special orthogonal transformations will be matrices $\begin{pmatrix} a & -pb \\ b & a \end{pmatrix}$ such that $a^2 + pb^2 = 1, a, b \in Q$. In that case, is the solution of the equation $a^2 + pb^2 = 1$ in the rational numbers field? We can answer this question by the following theorem.

Theorem 2.6. The description of the elements of the group SO(2, p, Q) is as follows.

- (i) There is no element $x=(x_1,x_2)\in Q^2$, such that $x_1=0$ and $M_x\in SO(2,p,Q)$, where $p\neq 1$. There are only two elements $(x_1, x_2) \in Q^2$, such that $x_2 = 0$ and $M_x \in SO(2, p, Q)$. These are (1, 0)and (-1,0).
- (ii) Assume that $x = (x_1, x_2) \in Q^2$ such that $x_2 \neq 0$ and $M_x \in SO(2, p, Q)$. Then there is the number $r \in Q$, where $r \neq 0$, such that the equalities are satisfied:

$$x_1 = \frac{p - r^2}{p + r^2}, \quad x_2 = \frac{2r}{p + r^2}$$
 (I).

(iii) Conversely, assume that r is an arbitrary nonzero element in Q and for $x=(x_1,x_2)\in Q^2$ the equalities are satisfied (I). Then $M_x \in SO(2, p, Q)$.

Proof. (i) This is obvious.

(ii) Assume that $x = (x_1, x_2) \in Q$ such that $x_2 \neq 0$ and $x_1^2 + px_2^2 = 1$. First, we prove that in this case $x_1^2 \neq 1$. Suppose $x_1^2 = 1$. Then from the equation $x_1^2 + px_2^2 = 1$, we obtain that $x_2^2 = 0$. It follows that $x_2 = 0$. This contradicts to $x_2 \neq 0$. So we proved $x_1^2 \neq 1$, $x_1 \neq 1$ and $x_1 \neq -1$.

From the equation $x_1^2 + px_2^2 = 1$ and from the inequalities $x_1 \neq 1$, $x_1 \neq -1$ we obtain the following equalities: $1 - x_1^2 = px_2^2 \Rightarrow px_2^2 = (1 - x_1)(1 + x_1) \Rightarrow \frac{px_2}{1 + x_1} = \frac{1 - x_1}{x_2}$.

Put $r = \frac{px_2}{1+x_1}$. Then we have $r = \frac{1-x_1}{x_2}$. From these two equalities we obtain the following equalities $\frac{1}{x_2} + \frac{x_1}{x_2} = \frac{p}{r}, \frac{1}{x_2} - \frac{x_1}{x_2} = r$. From last equalities we obtain $\frac{2}{x_2} = \frac{p}{r} + r, \frac{2x_1}{x_2} = \frac{p}{r} - r$. We find x_1, x_2 from these two equalities and we obtain the following equalities $x_1 = \frac{p-r^2}{p+r^2}, x_2 = \frac{2r}{p+r^2}$. The (ii) is proved.

(iii) Conversely, let $r \in Q$ be an arbitrary nonzero rational number. Put $x_1 = \frac{p-r^2}{p+r^2}$, $x_2 = \frac{2r}{p+r^2}$. We have $x_1^2 + px_2^2 = (\frac{p-r^2}{p+r^2})^2 + p(\frac{2r}{p+r^2})^2 = \frac{p^2-2pr^2+r^4+4pr^2}{(p+r^2)^2} = \frac{p^2+2pr^2+r^4}{(p+r^2)^2} = 1$. Therefore, $M_x \in SO(2, p, Q)$. Hence, all special orthogonal matrices given as follows:

$$SO(2, p, Q) = \left\{ \begin{pmatrix} \frac{p-r^2}{p+r^2} & \frac{-2pr}{p+r^2} \\ \frac{2r}{p+r^2} & \frac{p-r^2}{p+r^2} \end{pmatrix} | \forall r \in Q, r \neq 0 \right\}$$

and all orthogonal matrices are given as follows:

$$O(2,p,Q) = \left\{ \left(\begin{array}{cc} \frac{p-r^2}{p+r^2} & \frac{-2pr}{p+r^2} \\ \frac{2r}{p+r^2} & \frac{p-r^2}{p+r^2} \end{array} \right) \mid \ \forall r \in Q, r \neq 0 \right\} \cup \left\{ \left(\begin{array}{cc} \frac{p-r^2}{p+r^2} & \frac{2pr}{p+r^2} \\ -\frac{2pr}{p+r^2} & -\frac{p-r^2}{p+r^2} \end{array} \right) \mid \ \forall r \in Q, r \neq 0 \right\}.$$

2.1. Complete systems of invariants of an m-tuple in Q_p^2 for groups SO(2, p, Q) and MSO(2, p, Q).

Let N be the set of all natural numbers and $m \in N, m \ge 1$. Put $N_m = \{j \in N | 1 \le j \le m\}$.

Definition 2.7. A mapping $u: N_m \to Q^2$ will be called an m-tuple in Q^2 . Denote it in the following form: $u = (u_1, u_2, \dots u_m)$.

Denote by $(Q^2)^m$ the set of all m-tuples in Q^2 . Let G be a subgroup of the group MO(2, p, R).

Definition 2.8. Two m-tuples $u = (u_1, u_2, \dots u_m)$ and $v = (v_1, v_2, \dots v_m)$ in Q^2 is called G-equivalent if there exists $g \in G$ such that $v_j = gu_j, \forall j \in N_m$. In this case, we write v = g(u) or $u \stackrel{G}{\sim} v$.

Definition 2.9. A subset $C \subseteq (Q^2)^m$ is called G-invariant if $g(u) \in C, \forall u \in C, \forall g \in G$.

Definition 2.10. Let Ω be a set and it has at least two elements and C be a G-invariant subset of $(Q^2)^m$. A mapping $f: C \to \Omega$ is called G-invariant on C if $u \in C, v \in C$ and $u \stackrel{G}{\sim} v$, implies f(u) = f(v).

Let C be a G-invariant subset of $(Q^2)^m$ and Ω be a set such that it has at least two elements. Denote the set of all G-invariant functions $f: C \to \Omega$ on C by $Map(C, \Omega)^G$.

Example 2.11. Definitions of the groups H = O(2, p, Q), SO(2, p, Q) imply that the quadratic form $\Psi(x) = \langle x, x \rangle_p$ and the bilinear form $\langle x, y \rangle_p$ are H-invariant functions on the set Q^2 .

Example 2.12. Let $[x\,y]$ be the determinant $\begin{vmatrix} x_1 & y_1 \\ x_2 & y_2 \end{vmatrix}$ of $x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, y = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} \in Q^2$. Since det(g) = 1 for all $g \in SO(2, p, Q)$, we have $[(gx)(gy)] = det(g)[x\,y] = [x\,y]$ for all $g \in SO(2, p, Q)$. Hence $[x\,y]$ is an SO(2, p, Q)-invariant function on the set $(Q^2)^2$.

Example 2.13. Definitions of the groups H = MO(2, p, Q), MSO(2, p, Q) imply that the function $f(x, y) = \langle x - y, x - y \rangle_p$ is an *H*-invariant function on the set $(Q^2)^2$.

Definition 2.14. (see [22, 1.1]). Let C be a G-invariant subset of $(Q^2)^m$. A system $\{f_j|j\in J\}$, where $f_j\in Map(C,Q)^G, \forall j\in J$, will be called a *complete system* of G-invariant functions on C if $u\in C, v\in C$ and equalities $f_j(u)=f_j(v), \forall j\in J$, imply $u\stackrel{G}{\sim} v$.

Definition 2.15. (see [22, 1.1]) Let C be a G-invariant subset of $(Q^2)^m$ and $L = \{f_j | j \in J\}$ be a complete system of G-invariant functions on C. L is called a *minimal complete system* of G-invariant functions on C if $L \setminus \{f_j\}$ is not a complete system of G-invariant functions on C for any $j \in J$.

Put $\theta = (0,0)$, where $(0,0) \in Q^2$. Denote by θ_m the m-tuple $u = (u_1, u_2, \dots, u_m) \in (Q^2)^m$ such that $u_j = \theta, \forall j \in N_m$. Define the function $B : (Q^2)^m \to N_m \cup \{0\}$ as follows: put $B(0_m) = 0$. Let $u = (u_1, u_2, \dots, u_m) \in (Q^2)^m$ be such that $u \neq \theta_m$. In this case, we put B(u) = k, where $k \in N_m$ such that $u_j = \theta, \forall j = 1, \dots, k-1$ and $u_k \neq \theta$.

Proposition 2.16. Let G be a subgroup of O(2, p, Q). The function B(u) is a G-invariant function on $(Q^2)^m$.

Proof. It is obvious. \Box

Denote by U(m;0) the set $\{\theta_m\}$. Let $k \in N_m$. Denote by U(m;k) the set $\{u \in (Q^2)^m | B(u) = k\}$.

Proposition 2.17. Let G be a subgroup of O(2, p, Q). Then:

(1) The set U(m;k) is a G-invariant subset of $(Q^2)^m$ for k=0 and all $k \in N_m$.

- (2) $U(m;0) \cap U(m;l) = \emptyset, \forall l \in N_m \text{ and } U(m;k) \cap U(m;l) = \emptyset, \forall k, l \in N_m, k \neq l.$
- (3) $U(m;0) \cup (\bigcup_{k \in N_m} U(m;k)) = (Q^2)^m$.

Proof. It is obvious.
$$\Box$$

Proposition 2.18. Let $x, y \in Q(\sqrt{-p})$ such that $x \neq 0$. Then

(1) The element yx^{-1} exists, the equality $yx^{-1} = \frac{\langle x,y \rangle}{\Psi(x)} + \sqrt{-p} \frac{[x\,y]}{\Psi(x)}$ and the following equality hold

$$M_{yx^{-1}} = \begin{pmatrix} \frac{\langle x, y \rangle_p}{\Psi(x)} & -\frac{p[x \ y]}{\Psi(x)} \\ \frac{[x \ y]}{\Psi(x)} & \frac{\langle x, y \rangle_p}{\Psi(x)} \end{pmatrix}. \tag{2.2}$$

(2) $\det(M_{yx^{-1}}) = (\frac{\langle x,y \rangle_p}{\Psi(x)})^2 + p(\frac{[x\,y]}{\Psi(x)})^2 \neq 0$ if and only if $\Psi(y) \neq 0$.

Proof. (1) Let $x=x_1+\sqrt{-p}x_2, y=y_1+\sqrt{-p}y_2\in Q(\sqrt{-p})$ such that $x\neq 0$. Then x^{-1} exists. Hence yx^{-1} exists. By Proposition 1.7, $x^{-1}=\frac{W(x)}{\Psi(x)}$. Using $W(x)=x_1-\sqrt{-p}x_2$ and the multiplication in the field $Q(\sqrt{-p})$, we obtain the equalities $yx^{-1}=\frac{\langle x,y\rangle_p}{\Psi(x)}+\sqrt{-p}\frac{[x\,y]}{\Psi(x)}$ and Eq.(2.2).

(2) Let $\Psi(x) \neq 0$. Using Proposition 1.4 and Eq.(2.2), we obtain $(\frac{\langle x,y\rangle_p}{\Psi(x)})^2 + p(\frac{[x\,y]}{\Psi(x)})^2 = \det(M_{yx^{-1}}) = \Psi(yx^{-1}) = \Psi(y)\Psi(x^{-1}) = \frac{\Psi(y)}{\Psi(x)}$. Hence $(\frac{\langle x,y\rangle_p}{\Psi(x)})^2 + p(\frac{[x\,y]}{\Psi(x)})^2 = \frac{\Psi(y)}{\Psi(x)}$. This equality implies that $\det(M_{yx^{-1}}) = \frac{\Psi(y)}{\Psi(x)} \neq 0$ if and only if $\Psi(y) \neq 0$.

Now we consider the G-equivalence problem of m-tuples for the group SO(2, p, Q).

Proposition 2.19. Let G be a subgroup of O(2, p, Q). Assume that $u = (u_1, \ldots, u_m), v = (v_1, \ldots, v_m) \in (Q^2)^m$ be m-tuples such that $u \stackrel{G}{\sim} v$. Then B(u) = B(v).

Proof. Assume that $u \stackrel{G}{\sim} v$. By Proposition 2.16, the function B(u) is G-invariant. The G-equivalence of u, v and the G-invariance of B(u) imply the equality B(u) = B(v).

Let $u=(u_1,\ldots,u_m), v=(v_1,\ldots,v_m)\in (Q^2)^m$ be m-tuples such that B(u)=B(v)=0. Then $u=v=\theta_m$. Hence $u\stackrel{G}{\sim} v$. Now we consider the case $B(u)=B(v)\neq 0$.

Theorem 2.20. Let $u = (u_1, u_2, ..., u_m), v = (v_1, v_2, ..., v_m) \in (Q^2)^m$ be two m-tuples in Q^2 such that B(u) = B(v) = k, where $k \in N_m$.

- (i) Assume that $u \stackrel{SO(2,p,Q)}{\sim} v$. Then
 - (i.1) In the case k = m, the equality $\Psi(u_m) = \Psi(v_m)$ holds.
 - (i.2) In the case k < m, the following equalities hold

$$\begin{cases}
\Psi(u_k) = \Psi(v_k), \\
\langle u_k, u_j \rangle_p = \langle v_k, v_j \rangle_p, \forall j \in N_m, k < j, \\
[u_k u_j] = [v_k v_j], \forall j \in N_m, k < j.
\end{cases}$$
(2.3)

(ii) Conversely, assume that the equality $\Psi(u_m) = \Psi(v_m)$ holds in the case k = m and equalities Eq.(2.3) hold in the case k < m. Then, in the every of these cases, there exists the unique matrix $F \in SO(2, p, Q)$ such that $v_j = Fu_j, \forall j \in N_m$. In these cases, F has the following form

$$F = \begin{pmatrix} \frac{\langle u_k, v_k \rangle_p}{\Psi(u_k)} & -\frac{p[u_k \ v_k]}{\Psi(u_k)} \\ \frac{[u_k \ v_k]}{\Psi(u_k)} & \frac{\langle u_k, v_k \rangle_p}{\Psi(u_k)} \end{pmatrix}, \tag{2.4}$$

where
$$\det(F) = \left(\frac{\langle u_k, v_k \rangle_p}{\Psi(u_k)}\right)^2 + p\left(\frac{[u_k v_k]}{\Psi(u_k)}\right)^2 = 1.$$

Proof. (i) Assume that $u \stackrel{SO(2,p,Q)}{\sim} v$. In the case (i.1), the function $\Psi(u_m)$ is SO(2,p,Q)-invariant. Hence the equality $\Psi(u_m) = \Psi(v_m)$ holds.

In the case (i.2), functions $\Psi(u_k)$, $\langle u_k, u_j \rangle_p$ and $[u_k u_j]$ are also SO(2, p, Q)-invariant for all $j \in N_m, k < j$. Hence equalities Eq.(2.3) hold.

(ii) Conversely, assume that the equality $\Psi(u_m) = \Psi(v_m)$ holds in the case k = m and equalities Eq.(2.3) hold in the case k < m.

Let k=m. Consider the element $g=v_ku_k^{-1}\in Q^*(\sqrt{-p})$. Since $v_k=v_k(u_k^{-1}u_k)=(v_ku_k^{-1})u_k$, we have $v_k=gu_k$. Then by Eq.(2.2), we obtain that $v_k=M_gu_k$, where $M_g\in M(Q^*(\sqrt{-p}))$. Using the equality $\Psi(u_k)=\Psi(v_k)$ and Proposition 1.4, we obtain $\det(M_g)=\Psi(g)=\Psi(v_ku_k^{-1})=\Psi(v_k)\Psi(u_k^{-1})=\Psi(v_k)\Psi(u_k)^{-1}=1$. Hence $g\in S(Q^*(\sqrt{-p}))$. By Theorem 2.5, $M_g\in SO(2,p,Q)$. This implies that $v_k=M_gu_k$. Since B(u)=B(v)=k, we have $u_j=v_j=\theta, \forall j\in N_m, j< k$. These equalities, the equality $v_k=M_gu_k$ and the equality k=m imply equalities $v_j=M_gu_j, \forall j\in N_m$. Hence $u\stackrel{SO(2,p,Q)}{\sim}v$ in the case k=m. By $g=v_ku_k^{-1}$ and Proposition 2.18, M_g has the form (2.4). By $\det(M_g)=1$ and Proposition 2.18, we obtain the equality $\det(M_g)=(\frac{\langle u_k,v_k\rangle_p}{\Psi(u_k)})^2+p(\frac{[u_kv_k]}{\Psi(u_k)})^2=1$. Let k< m. Using equalities Eq.(2.3) and equalities $u_k^{-1}u_j=\frac{\langle u_k,u_j\rangle_p}{\Psi(u_k)}+\sqrt{-p}\frac{[u_ku_j]}{\Psi(u_k)}, \forall j\in N_m, k< j$,

Let k < m. Using equalities Eq.(2.3) and equalities $u_k^{-1}u_j = \frac{\langle u_k, u_j \rangle_p}{\Psi(u_k)} + \sqrt{-p} \frac{[u_k u_j]}{\Psi(u_k)}, \forall j \in N_m, k < j$, equalities $v_k^{-1}v_j = \frac{\langle v_k, v_j \rangle_p}{\Psi(v_k)} + \sqrt{-p} \frac{[v_k v_j]}{\Psi(v_k)}, \forall j \in N_m, k < j$, in Proposition 2.18, we obtain following equalities

$$u_k^{-1} u_j = v_k^{-1} v_j, \forall j \in N_m, k < j.$$
(2.5)

Consider the element $g=v_ku_k^{-1}\in Q^*(\sqrt{-p})$. Since $v_k=v_k(u_k^{-1}u_k)=(v_ku_k^{-1})u_k$, we have $v_k=gu_k$. Using equalities Eq.(2.5), we obtain $v_k(u_k^{-1}u_j)=v_k(v_k^{-1}v_j), \forall j\in N_m, k< j$. These equalities and the above equality $g=v_ku_k^{-1}$ imply $v_j=(v_kv_k^{-1})v_j=v_k(v_k^{-1}v_j)=v_k(u_k^{-1}u_j)=(v_ku_k^{-1})u_j=gu_j$ for all $j\in N_m, k< j$. Thus we have $v_j=gu_j, \forall j\in N_m, k< j$, where $g=v_ku_k^{-1}\in Q^*(\sqrt{-p})$. The equality $g=v_ku_k^{-1}$ implies $v_k=gu_k$. This equality and the equalities $v_j=gu_j, \forall j\in N_m, k< j$ imply equalities $v_j=gu_j, \forall j\in N_m, k\leq j$. Then by Eq.(1.1), we obtain that $v_j=M_gu_j, \forall j\in N_m, k\leq j$, where $M_g\in M(Q^*(\sqrt{-p}))$. These equalities and the equality B(u)=B(v)=k imply that $v_j=M_gu_j$ for all $j\in N_m$. So we obtain that $\det(M_g)=1$. Since $\det(M_g)=1$, by Theorem 2.5, $M_g\in SO(2,p.Q)$. Hence we obtain $u\stackrel{SO(2,p,Q)}{\sim}v$.

Prove the uniqueness of $U \in SO(2, p, Q)$ satisfying the conditions $v_j = Uu_j, \forall j \in N_m$. Assume that $U \in SO(2, p, Q)$ such that $v_j = Uu_j, \forall j \in N_m$. Then by Eq.(1.1) and Theorem 2.5, there exists the unique $b \in S(Q^*(\sqrt{-p}))$ such that $U = M_b$. Hence we have $v_j = M_b u_j, \forall j \in N_m$. By Eq.(1.1), we obtain $v_j = bu_j, \forall j \in N_m$. Since $\Psi(u_k) \neq 0$, the equality $v_k = bu_k$ implies that $b = v_k u_k^{-1} = g \in S(Q^*(\sqrt{-p}))$. The uniqueness of U is proved.

Let us obtain the evident form of M_g . By Proposition 2.18, the element $g = v_k u_k^{-1}$ is equal to $\frac{\langle u_k, v_k \rangle_p}{\Psi(u_k)} + \sqrt{-p} \frac{[u_k v_k]}{\Psi(u_k)}$. Hence the matrix M_g has the form Eq.(2.4). Since $g \in S(Q^*(\sqrt{-p}))$, by Theorem 2.5, $\det(M_g) = 1$.

Remark 2.21. Let $k, m \in N, m > 1, 1 \le k \le m$. By Theorem 2.20, the function $\Psi(u_k)$ is a complete system of SO(2, p, Q)-invariant functions on the set U(k; k) in the case k = m. By Theorem 2.20, the system

$$\{\Psi(u_k), \langle u_k, u_j \rangle_p, [u_k u_j], j \in N_m, k < j\}.$$
 (2.6)

is a complete system of SO(2, p, Q)-invariant functions on the set U(m; k) in the case k < m.

Let G = O(2, p, Q) or G = SO(2, p, Q). Denote by $G \vee Tr(2, p, Q)$ the group of all transformations of Q^2 generated by elements of G and all translations of Q^2 . In particularly, $MO(2, p, Q) = O(2, p, Q) \vee Tr(2, p, Q)$ and $MSO(2, p, Q) = SO(2, p, Q) \vee Tr(2, p, Q)$. Now we consider H-equivalence problem of m-tuples for the group $H = G \vee Tr(2, p, Q)$. Let u and v be m-tuples, where m = 1. Then it is obvious that they are $G \vee Tr(2, p, Q)$ -equivalent.

Let $z \in Q^2$. Denote by $z \cdot 1_m$ the m-tuple (y_1, y_2, \ldots, y_m) such that $y_j = z, \forall j \in N_m$. Let $u = (u_1, u_2, \ldots, u_m)$ be an m-tuple. Denote by $u - u_m \cdot 1_m$ the m-tuple $(u_1 - u_m, u_2 - u_m, \ldots, u_{m-1} - u_m, 0)$.

Proposition 2.22. Let G = O(2, p, Q) or G = SO(2, p, Q). Assume that m > 1 and $u = (u_1, u_2, \ldots, u_m), v = (v_1, v_2, \ldots, v_m) \in (Q^2)^m$. Then $u \stackrel{G \vee Tr(2, p, Q)}{\sim} v$ if and only if m-tuples $u - u_m \cdot 1_m$ and $v - v_m \cdot 1_m$ are G-equivalent.

Proof. \Rightarrow Assume that $u \overset{G\vee Tr(2,p,Q)}{\sim} v$. Then there exists $F \in G$ and $a \in Q^2$ such that $v_j = Fu_j + a, \forall j \in N_m$. In particularly, for j = m, we have $v_m = Fu_m + a$. This equality implies $a = v_m - Fu_m$. This equality and equalities $v_j = Fu_j + a, \forall j \in N_m$, imply equalities $v_j = Fu_j + v_m - Fu_m, \forall j \in N_m$. These equalities imply equalities $v_j - v_m = F(u_j - u_m), \forall j \in N_m$. That is $(u_1 - u_m, u_2 - u_m, \dots, u_{m-1} - u_m, 0) \overset{G}{\sim} (v_1 - v_m, v_2 - v_m, \dots, v_{m-1} - v_m, 0)$.

 $\Leftarrow \text{ Assume that } (u_1-u_m,u_2-u_m,\ldots,u_{m-1}-u_m,0) \overset{G}{\sim} (v_1-v_m,v_2-v_m,\ldots,v_{m-1}-v_m,0). \text{ Then there exists } F \in G \text{ such that } v_j-v_m=F(u_j-u_m), \forall j \in N_m. \text{ Put } a=v_m-Fu_m. \text{ This equality implies } v_m=Fu_m+a. \text{ The equality } a=v_m-Fu_m \text{ and equalities } v_j-v_m=F(u_j-u_m), \forall j \in N_m, v_m=Fu_m+a \text{ imply equalities } v_j=Fu_j+a, \forall j \in N_m. \text{ Hence } u \overset{G\vee Tr(2,p,Q)}{\sim} v.$

Corollary 2.23. Let G = O(2, p, Q) or G = SO(2, p, Q). Assume that m > 1 and $u = (u_1, u_2, \ldots, u_m), v = (v_1, v_2, \ldots, v_m) \in (Q^2)^m$. Then $u \overset{G \vee Tr(2, p, Q)}{\sim} v$ if and only if (m-1)-tuples $(u_1 - u_m, u_2 - u_m, \ldots, u_{m-1} - u_m)$ and $(v_1 - v_m, v_2 - v_m, \ldots, v_{m-1} - v_m)$ are G-equivalent.

Proof. It follows from Proposition 2.22.

Proposition 2.24. Let G = SO(2, p, Q) or G = O(2, p, Q). Assume that $u \stackrel{G \vee Tr(2, p, Q)}{\sim} v$. Then $B(u - u_m \cdot 1_m) = B(v - v_m \cdot 1_m)$.

Proof. This statement follows from Propositions 2.19 and 2.22.

Let $u = (u_1, u_2, \dots, u_m) \in (Q^2)^m$ and G denote either the special orthogonal group SO(2, p, Q) or the orthogonal group O(2, p, Q). By Proposition 2.24, the function $B(u - u_m \cdot 1_m)$ is a $G \vee Tr(2, p, Q)$ -invariant function of $u \in (Q^2)^m$.

It is obvious that $B(u - u_m \cdot 1_m) \leq m - 1, \forall u \in (Q^2)^m$. We note that $B(u - u_m \cdot 1_m) = 0$ if and only if $u - u_m \cdot 1_m = 0_m$ that is $u = u_m \cdot 1_m = (u_1, u_2, \dots, u_m)$, where $u_j = u_m, \forall j \in N_m$.

Proposition 2.25. Let G = SO(2, p, Q) or G = O(2, p, Q). Assume that $B(u - u_m \cdot 1_m) = B(v - v_m \cdot 1_m) = 0$. Then $u \stackrel{G \lor Tr(2, p, Q)}{\sim} v$.

Proof. In the case $B(u-u_m\cdot 1_m)=B(v-v_m\cdot 1_m)=0$, the m-tuple u has the form $u=(u_m,u_m,\ldots,u_m)$ and the m-tuple v has the form $v=(v_m,v_m,\ldots,v_m)$. Then we have $v_j=F(u_j), \forall j\in N_m$, where $F\in Tr(2,p,Q)$ has the following form: $v_j=v_m=u_m+a=u_j+a, \forall j\in N_m$, where $a=v_m-u_m$. Hence u and v are $G\vee Tr(2,p,Q)$ -equivalent.

Denote by $\Omega(m;0)$ the set of all $u \in (Q^2)^m$ such that $B(u-u_m \cdot 1_m)=0$. Let k=0 or $k \in N_m$ such that $k \leq m-1$. Put $\Omega(m;k)=\{u \in (Q^2)^m | B(u-u_m \cdot 1_m)=k\}$.

Proposition 2.26. (1) Let G = SO(2, p, Q) or G = O(2, p, Q). Then every set $\Omega(m; k)$ is an $G \vee Tr(2, p, Q)$ -invariant subset of $(Q^2)^m$ for k = 0 and all $k \in N_m, k \le m - 1$.

- (2) $\Omega(m;0) \cap \Omega(m;l) = \emptyset, \forall l \in N_m, l \leq m-1.$
- (3) $\Omega(m;k) \cap \Omega(m;l) = \emptyset, \forall k, l \in N_m, where k \neq l, k \leq m-1, l \leq m-1.$
- (4) $\bigcup_{k=0}^{m-1} \Omega(m;k) = (Q^2)^m$.

Proof. It follows from Proposition 2.17

Let $u, v \in (Q^2)^m$ such that $B(u - u_m \cdot 1_m) = B(v - v_m \cdot 1_m) = 0$. Then, by Proposition 2.24, $u \stackrel{SO(2,p,Q) \vee Tr(2,p,Q)}{\sim} v$. Now we consider the case $B(u - u_m \cdot 1_m) = B(v - v_m \cdot 1_m) = k$, where $k \in N_m, k \leq m-1$.

Theorem 2.27. Let $u = (u_1, u_2, ..., u_m), v = (v_1, v_2, ..., v_m) \in (Q^2)^m$ be two m-tuples such that $B(u - u_m \cdot 1_m) = B(v - v_m \cdot 1_m) = k$, where $k \in N_m, k \le m - 1$.

- (i) Assume that $u \stackrel{MSO(2,p,Q)}{\sim} v$. Then
 - (i.1) In the case m = k + 1, the equality $\Psi(u_k u_m) = \Psi(v_k v_m)$ holds.
 - (i.2) In the case k + 1 < m, the following equalities hold

$$\begin{cases}
\Psi(u_{k} - u_{m}) = \Psi(v_{k} - v_{m}); \\
\langle u_{k} - u_{m}, u_{j} - u_{m} \rangle_{p} = \langle v_{k} - v_{m}, v_{j} - v_{m} \rangle_{p}, \forall j \in N_{m}, k < j \leq m - 1; \\
[(u_{k} - u_{m})(u_{j} - u_{m})] = [(v_{k} - v_{m})(v_{j} - v_{m})], \forall j \in N_{m}, k < j \leq m - 1.
\end{cases}$$
(2.7)

(ii) Conversely, assume that the equality $\Psi(u_k - u_m) = \Psi(v_k - v_m)$ holds in the case k+1 = m and equalities Eq.(2.7) hold in the case k+1 < m. Then there exists the unique matrix $F \in SO(2,p,Q)$ and the unique element $b \in Q^2$ such that $v_j = Fu_j + b, \forall j \in N_m$. In this case, F has the following form

$$F = \begin{pmatrix} \frac{\langle u_k - u_m, v_k - v_m \rangle_p}{\Psi(u_k - u_m)} & -p \frac{[(u_k - u_m)(v_k - v_m)]}{\Psi(u_k - u_m)} \\ \frac{[(u_k - u_m)(v_k - v_m)]}{\Psi(u_k - u_m)} & \frac{\langle u_k - u_m, v_k - v_m \rangle_p}{\Psi(u_k - u_m)} \end{pmatrix},$$
(2.8)

where $\det(F) = (\frac{\langle u_k - u_m, v_k - v_m \rangle_p}{\Psi(u_k - u_m)})^2 + p(\frac{[(u_k - u_m) \ (v_k - v_m)]}{\Psi(u_k - u_m)})^2 = 1$ and element $b \in Q^2$ is equal to $v_m - Fu_m$.

- *Proof.* (i) Assume that $u \stackrel{MSO(2,p,Q)}{\sim} v$. Then, by Proposition 2.22, the m-tuples $(u_1 u_m, u_2 u_m, \dots, u_{m-1} u_m, 0)$ and $(v_1 v_m, v_2 v_m, \dots, v_{m-1} v_m, 0)$ are SO(2, p, Q)-equivalent. This equivalence and Theorem 2.20 imply the equality $\Psi(u_k u_m) = \Psi(v_k v_m)$ in the case m = k + 1 and the equalities Eq.(2.7) in the case k + 1 < m.
- (ii) Conversely, assume that the equality $\Psi(u_k u_m) = \Psi(v_k v_m)$ holds in the case m = k + 1 and the equalities Eq.(2.7) hold in the case k + 1 < m. Then, by Theorem 2.20, in every these cases there exists the unique matrix $F \in SO(2, p, Q)$ such that $v_j v_m = F(u_j u_m), \forall j \in N_m$. By Theorem 2.20, F has the form (2.8), where $\det(F) = (\frac{\langle u_k u_m, v_k v_m \rangle_p}{\Psi(u_k u_m)})^2 + p(\frac{[(u_k u_m)(v_k v_m)]}{\Psi(u_k u_m)})^2 = 1$. Put $b = v_m Fu_m$. Then this equality and equalities $v_j v_m = F(u_j u_m), \forall j \in N_m$, imply equalities $v_j = F(u_j) + b, \forall j \in N_m$. The uniqueness of F such that $v_j v_m = F(u_j u_m), \forall j \in N_m$ implies the uniqueness of F such that $F(u_j) = F(u_j) + b, \forall j \in N_m$.

Remark 2.28. Let $k, m \in N, m > 1, 1 \le k \le m - 1$. By Theorem 2.27, the function $\Psi(u_k - u_m)$ is a complete system of MSO(2, p, Q)-invariant functions on the set $\Omega(m; k)$ in the case m = k + 1. By Theorem 2.27, the system

$$\{\Psi(u_k - u_m), \langle u_k - u_m, u_j - u_m \rangle_p, [(u_k - u_m)(u_j - u_m)], k + 1 \le j \le m - 1\}$$
(2.9)

is a complete system of MSO(2, p, Q)-invariant functions on the set $\Omega(m; k)$ in the case k + 1 < m.

3. Complete systems of invariants of an m-tuple in Q^2 for groups O(2,p,Q) and MO(2,p,Q)

First we consider the case m = 1.

Theorem 3.1. Let $u, v \in Q^2$.

- (i) Assume that $u \stackrel{O(2,p,Q)}{\sim} v$. Then the equality $\Psi(u) = \Psi(v)$ holds.
- (ii) Conversely, assume that the equality $\Psi(u) = \Psi(v)$ holds. In this case, $\Psi(u) = 0$ or $\Psi(u) \neq 0$ (ii.1) Let $\Psi(u) = 0$. Then $u = \theta, v = \theta$, where $\theta = (0,0)$, and $u \stackrel{O(2,p,Q)}{\sim} v$.
 - (ii.2) Let $\Psi(u) \neq 0$. Then $u \neq \theta, v \neq \theta$ and $u \stackrel{O(2,p,Q)}{\sim} v$. In this case, only two matrices $F_1 \in$

O(2, p, Q) and $F_2 \in O(2, p, Q)$ exist such that $v = F_1u$, and $v = F_2u$. Here $F_1 \in SO(2, p, Q)$ and it has the following form

$$F_{1} = \begin{pmatrix} \frac{\langle u, v \rangle_{p}}{\Psi(u)} & -\frac{p[u \ v]}{\Psi(u)} \\ \frac{[u \ v]}{\Psi(u)} & \frac{\langle u, v \rangle_{p}}{\Psi(u)} \end{pmatrix}, \tag{3.1}$$

where $det(F_1) = (\frac{\langle u, v \rangle_p}{\Psi(u)})^2 + p(\frac{[u \ v]}{\Psi(u)})^2 = 1.$

Here $F_2 \in O(2, p, Q)$ and it has the following form $F_2 = HW$, where $W = ||w_{kl}||_{k,l=1,2}$, $w_{11} = 1$, $w_{12} = w_{21} = 0$, $w_{22} = -1$, $H \in SO(2, p, Q)$ and H has the following form

$$H = \begin{pmatrix} \frac{\langle (Wu), v \rangle_p}{\Psi(Wu)} & -\frac{p[(Wu) \, v]}{\Psi(Wu)} \\ \frac{[(Wu) \, v]}{\Psi(Wu)} & \frac{\langle (Wu), v \rangle_p}{\Psi(Wu)} \end{pmatrix}, \tag{3.2}$$

where $det(H) = (\frac{\langle (Wu), v \rangle_p}{\Psi(Wu)})^2 + p(\frac{[(Wu) \ v]}{\Psi(Wu)})^2 = 1$ and $det(F_2) = -1$.

Proof. (i) Assume that $u \stackrel{O(2,p,Q)}{\sim} v$. By Example 2.11, the function $\Psi(x)$ is O(2,p,Q)-invariant. Hence the equality $\Psi(u) = \Psi(v)$ holds.

- (ii) Assume that the equality $\Psi(u) = \Psi(v)$ holds.
- (ii.1) Let $\Psi(u) = 0$. Then $u = v = \theta$. Then it is obvious that $u \stackrel{O(2,p,Q)}{\sim} v$.
- (ii.2) Let $\Psi(u) \neq 0$. This inequality and the equality $\Psi(u) = \Psi(v)$ imply inequalities $u \neq \theta$ and $v \neq \theta$. By Theorem 2.20, there exists the unique $F_1 \in SO(2, p, Q)$ such that $v = F_1 u$. Since $F_1 \in SO(2, p, Q) \subset O(2, p, Q)$, we obtain that $u \stackrel{O(2, p, Q)}{\sim} v$. Put $g = vu^{-1}$. By this equality and Proposition 2.18, $F_1 = M_g$. Hence we have $v = M_g u$. By Theorem 2.20, we obtain that M_g has the form (3.1) and the properties $\det(M_g) = (\frac{\langle u, v \rangle_p}{\Psi(u)})^2 + p(\frac{\lfloor uv \rfloor}{\Psi(u)})^2 = 1$, $M_g \in SO(2, p, Q)$, $v = M_g u$ hold.

Now we investigate an existence of $F_2 \in O(2, p, Q)$ of the form $F_2 = HW$ such that $v = F_2u$, where $H \in SO(2, p, Q)$. For given above u, v, the equality $\Psi(u) = \Psi(v)$ holds. Using Proposition 1.6(4), we obtain the equality $\Psi(v) = \Psi(u) = \Psi(Wu)$. By the equality $\Psi(v) = \Psi(Wu)$ and Theorem 2.20, there exists the unique $H \in SO(2, p, Q)$ such that v = H(Wu). Put $F_2 = HW$. Then $F_2 \in \{HW|H \in SO(2, p, Q)\}$. Hence there exists $F_2 \in O(2, p, Q)$ of the form $F_2 = HW$, where $H \in SO(2, p, Q)$, such that $v = F_2u$.

Prove the uniqueness of $F_2 \in \{HW | H \in SO(2, p, Q)\}$ such that $v = F_2u$. Assume that $F_2 = H_2W \in \{HW | H \in SO(2, p, Q)\}$ and $F_3 = H_3W \in \{HW | H \in SO(2, p, Q)\}$ such that $v = H_2Wu$ and $v = H_3Wu$, where $H_2, H_3 \in SO(2, p, Q)$. Then we have $v = H_2(Wu) = H_3(Wu)$. Using the uniqueness in Theorem 2.20, we obtain $H_2 = H_3$. This means that the unique $F_2 = H_2W \in \{HW | H \in SO(2, p, Q)\}$ exists such that $v = F_2(u)$. By Theorem 2.20, we obtain that H_2 has the form (3.2) and the properties $det(H_2) = (\frac{\langle Wu, v \rangle_p}{\Psi(Wu)})^2 + p(\frac{[(Wu)^v]}{\Psi(Wu)})^2 = 1$, $H_2W \in O(2, p, Q)$, $det(F_2) = -1$, $v = H_2W(u)$ hold. \square

Remark 3.2. Theorem 3.1 means that the function $\Psi(u)$ is a complete system of O(2, p, Q)-invariant functions on the set U(1; 1).

Let $u=(u_1,u_2,\ldots,u_m)\in (Q^2)^m$. Denote by r(u) the rank of the system $\{u_1,u_2,\ldots,u_m\}$ in the space Q^2 . For $u=\theta_m$, we put $r(\theta_m)=0$. Assume that $u\neq\theta_m$. Then r(u)=1 or r(u)=2. It is obvious that the rank r(u) is O(2,p,Q)-invariant of u. Put $U_0(m)=U(m,0)$. For $k\in N_m$, l=1,2, denote by $U_l(m,k)$ the set of elements $u\in U(m,k)$ such that r(u)=l. It is obvious that $U_0(m)\cap U_l(m,k)=\emptyset$ for l=1,2 and $U_l(m,k)\cap U_q(m,k)=\emptyset$ for l,q=1,2 such that $l\neq q$. The following equalities $U_1(m,k)\cup U_2(m,k)=U(m,k), \forall k\in N_m$ and $U_0(m)\cup (\bigcup_{k=1}^m U_1(m,k))\cup (\bigcup_{k=1}^m U_2(m,k))=(Q^2)^m$ hold. Let $u\in U_0(m), v\in U_0(m)$. Then $u=v=\theta_m$. Hence $u\stackrel{O(2,p,Q)}{\sim}v$.

Theorem 3.3. Let m > 1 and $u = (u_1, u_2, ..., u_m) \in U_1(m, k), v = (v_1, v_2, ..., v_m) \in U_1(m, k),$ where $k \in N_m$.

(i) Assume that k=m and $u \overset{O(2,p,Q)}{\sim} v$. Then the equality $\Psi(u_m)=\Psi(v_m)$ holds. Conversely, assume that k=m and the equality $\Psi(u_m)=\Psi(v_m)$ holds. In this case, only two matrices $F_1\in O(2,p,Q)$ and $F_2\in O(2,p,Q)$ exist such that $v_j=F_1(u_j), \forall j\in N_m$, and $v_j=F_2(u_j), \forall j\in N_m$. Here $F_1\in SO(2,p,Q)$ and it has the following form

$$F_1 = \begin{pmatrix} \frac{\langle u_k, v_k \rangle_p}{\Psi(u_k)} & -p \frac{[u_k v_k]}{\Psi(u_k)} \\ \frac{[u_k v_k]}{\Psi(u_k)} & \frac{\langle u_k, v_k \rangle_p}{\Psi(u_k)} \end{pmatrix}, \tag{3.3}$$

where $det(F_1) = (\frac{\langle u_k, v_k \rangle_p}{\Psi(u_k)})^2 + p(\frac{[u_k v_k]}{\Psi(u_k)})^2 = 1.$

Here $F_2 \in O(2, p, Q)$ and it has the following form $F_2 = HW$, where $W = ||w_{kl}||_{k,l=1,2}$, $w_{11} = 1$, $w_{12} = w_{21} = 0$, $w_{22} = -1$, $H \in SO(2, p, Q)$ and H has the following form

$$H = \begin{pmatrix} \frac{\langle (Wu_k), v_k \rangle_p}{\Psi(Wu_k)} & -\frac{p[(Wu_k) v_k]}{\Psi(Wu_k)} \\ \frac{[(Wu_k) v_k]}{\Psi(Wu_k)} & \frac{\langle (Wu_k), v \rangle_p}{\Psi(Wu_k)} \end{pmatrix}, \tag{3.4}$$

where $det(H) = (\frac{\langle (Wu_k), v_k \rangle_p}{\Psi(Wu_k)})^2 + p(\frac{[(Wu_k)v_k]}{\Psi(Wu_k)})^2 = 1$ and $det(F_2) = -1$.

(ii) Assume that k < m and $u \stackrel{O(2,p,Q)}{\sim} v$. Then the following equalities hold

$$\begin{cases}
\Psi(u_k) = \Psi(v_k), \\
\langle u_k, u_j \rangle_p = \langle v_k, v_j \rangle_p, \forall j \in N_m, k < j.
\end{cases}$$
(3.5)

Conversely, assume that the equalities Eq.(3.5) hold. In this case, only two matrices $F_1 \in O(2,p,Q)$ and $F_2 \in O(2,p,Q)$ exist such that $v = F_1u$ and $v = F_2u$. Here $F_1 \in SO(2,Q)$ and it is has the form Eq.(3.3). Here $F_2 \in O(2,p,Q)$ and it has the following form $F_2 = HW$, where $W = \|w_{kl}\|_{k,l=1,2}$, $w_{11} = 1$, $w_{12} = w_{21} = 0$, $w_{22} = -1$, $H \in SO(2,p,Q)$ and H has the form Eq.(3.4).

Proof. (i) In this case, m-tuples u and v have following forms: $u = (u_1, u_2, \dots, u_m)$, where $u_j = \theta, \forall j \in N_m, j < m, u_m \neq \theta, v = (v_1, v_2, \dots, v_m)$, where $v_j = \theta, \forall j \in N_m, j < m, v_m \neq \theta$. These forms imply that the statement (i) follows from Theorem 3.1.

(ii) Assume that the equalities Eq.(3.5) hold. Since r(u)=r(v)=1, m-tuples u and v have following forms: $u=(u_1,u_2,\ldots,u_m)$, where $u_j=\theta, \forall j\in N_m, j< k,\ u_k\neq\theta,\ u_j=a_ju_k, \forall j\in N_m, k< j,$ for some $a_j\in Q, \forall j\in N_m, k< j,$ and $v=(v_1,v_2,\ldots,v_m),$ where $v_j=\theta, \forall j\in N_m, j< k,\ v_k\neq\theta,\ v_j=b_jv_k, \forall j\in N_m, k< j$ for some $b_j\in R, \forall j\in N_m, k< j.$ It is easy to see that equalities Eq.(3.5) and the inequality $\Psi(u_k)\neq 0$ imply equalities $a_j=b_j, \forall j\in N_m, k< j.$ Hence m-tuples u,v have following forms $u=(u_1,u_2,\ldots,u_m),$ where $u_j=\theta, \forall j\in N_m, j< k,\ u_k\neq\theta,\ u_j=a_ju_k, \forall j\in N_m, k< j,$ and $v=(v_1,v_2,\ldots,v_m),$ where $v_j=\theta, \forall j\in N_m, j< k,\ v_k\neq\theta,\ v_j=a_jv_k, \forall j\in N_m, k< j.$

By using Eq.(3.5), we obtain equality $\Psi(u_k) = \Psi(v_k)$. Since $u_k \neq \theta$, we obtain that $\Psi(u_k) = \Psi(v_k) \neq 0$. Then, by Theorem 3.1(ii.2), only two matrices $F_1 \in O(2, p, Q)$ and $F_2 \in O(2, p, Q)$ exist such that $v_k = F_1(u_k)$ and $v_k = F_2(u_k)$. Here $F_1 \in SO(2, p, Q)$ and it has the form Eq.(3.3) and $F_2 \in O(2, p, Q)$ has the form $F_2 = HW$, where $H \in SO(2, p, Q)$ and H has the form Eq.(3.4). Equalities $v_k = F_1(u_k), v_k = F_2(u_k)$ and equalities $u_j = \theta, \forall j \in N_m, j < k, u_k \neq \theta, u_j = a_j u_k, \forall j \in N_m, k < j, v_j = \theta, \forall j \in N_m, j < k, v_k \neq \theta, v_j = a_j v_k, \forall j \in N_m, k < j \text{ imply equalities } v_j = F_1(u_j), \forall j \in N_m \text{ and } v_j = F_2(u_j), \forall j \in N_m.$

Now we prove that if a matrix $A \in O(2, p, Q)$ such that $v_j = A(u_j), \forall j \in N_m$, then $A = F_1$ or $A = F_2$. Equalities $v_j = A(u_j), \forall j \in N_m$, implies the equality $v_k = A(u_k)$, where $k \in N_m$. Then, by Theorem 3.1(ii.2), $A = F_1$ or $A = F_2$.

Theorem 3.4. Let $m > 1, k \in N_m$ and $u = (u_1, u_2, \ldots, u_m) \in (Q^2)^m$. Let $\left\{ \Psi(u_k), \langle u_k, u_j \rangle_p | j \in N_m, k < j \right\}$ be the complete system of O(2, p, Q)-invariants on the set $U_1(m; k)$ given in Theorem 3.3. Then $\Psi(u_k) > 0$ for all $u \in U_1(m; k)$.

Proof. A proof is similar to the proof of Theorem 2.20 and it is omitted.

Let m > 1 and $u = (u_1, u_2, \ldots, u_m) \in (Q^2)^m$. Assume that r(u) = 2 and B(u) = k, where $k \in N_m$. Put $B_1(u) = B(u)$. Denote by $\{\lambda u_k | \lambda \in Q\}$ the linear subspace of Q^2 generated by u_k . Denote by $B_2(u)$ the smallest of $s, s \in N_m$, such that $u_s \notin \{\lambda u_k | \lambda \in Q\}$. Then $B_1(u) < B_2(u) \le m$ for all $u \in U_2(m,k)$. The number $B_2(u)$ is an O(2,p,Q)-invariant of an m-tuple u. The pair $(B_1(u),B_2(u))$ will be called the type of an m-tuple $u \in U_2(m,k)$ of r(u) = 2. The type $(B_1(u),B_2(u))$ is an O(2,p,Q)-invariant of an m-tuple $u \in U_2(m,k)$. Let $k,l \in N_m$ such that k < l. Then there exists an m-tuple $u = (u_1,u_2,\ldots,u_m) \in (Q^2)^m$ such that $B_1(u) = k$ and $B_2(u) = l$. In this case, vectors $u_k = (u_{k1},u_{k2})$ and $u_l = (u_{l1},u_{l2})$ are linearly independent.

Denote by E(u; k, l) the following 2×2 -matrix

$$\left(\begin{array}{cc} u_{k1} & u_{k2} \\ u_{l1} & u_{l2} \end{array}\right).$$

Since vectors $u_k = (u_{k1}, u_{k2})$ and $u_l = (u_{l1}, u_{l2})$ are linearly independent, $det(E(u; k, l)) \neq 0$. Denote by $\Phi(u; k, l)$ the following 2×2 -matrix

$$\begin{pmatrix} u_{k1} & pu_{k2} \\ u_{l1} & pu_{l2} \end{pmatrix}. \tag{3.6}$$

We have $det(\Phi(u; k, l)) = pu_{k1}u_{i2} - pu_{k2}u_{l1} = pdet(E(u; k, l))$. Since $det(E(u; k, l)) \neq 0$, we obtain that $det(\Phi(u; k, l)) \neq 0$. Hence the inverse matrix $\Phi^{-1}(u; k, l)$ exits.

Denote by $U_2(m, k, l)$ the set of all m-tuples u such that $B_1(u) = k$ and $B_2(u) = l$.

Theorem 3.5. Let m > 1 and $u = (u_1, u_2, ..., u_m) \in U_2(m, k, l), v = (v_1, v_2, ..., v_m) \in U_2(m, k, l),$ where $k, l \in N_m, k < l, u_k = (u_{k1}, u_{k2}), u_l = (u_{l1}, u_{l2}), v_k = (v_{k1}, v_{k2}), v_l = (v_{l1}, v_{l2}).$

(i) Assume that $u \stackrel{O(2,p,Q)}{\sim} v$. Then the following equalities hold:

$$\begin{cases}
\langle u_k, u_j \rangle_p = \langle v_k, v_j \rangle_p, \forall j \in N_m, k \leq j; \\
\langle u_l, u_j \rangle_p = \langle v_l, v_j \rangle_p, \forall j \in N_m, k < j.
\end{cases}$$
(3.7)

(ii) Conversely, assume that the equalities Eq.(3.7) hold. Then $u \stackrel{O(2,p,Q)}{\sim} v$. In this case, the unique $F \in O(2,p,Q)$ exists such that $v_j = F(u_j), \forall j \in N_m$, and F has the following form $F = \Phi^{-1}(v;k,l)\Phi(u;k,l)$.

Proof. (i) Assume that $u \stackrel{O(2,p,Q)}{\sim} v$. Since the functions $\langle u_k, u_j \rangle_p$ and $\langle u_l, u_j \rangle_p$ are O(2,p,Q)-invariant, equalities Eq.(3.7) hold.

(ii) Conversely, assume that the equalities Eq.(3.7) hold. For $j \in N_m$, consider the vectors $u_j = (u_{j1}, u_{j2})$ and $v_j = (v_{j1}, v_{j2})$. Transposes of vectors u_j and v_j denote by u_j^{\top} and v_j^{\top} .

$$u_j^{\top} = \left(\begin{array}{c} u_{j1} \\ u_{j2} \end{array}\right), v_j^{\top} = \left(\begin{array}{c} v_{j1} \\ v_{j2} \end{array}\right).$$

Consider the following vectors: $u_k = (u_{k1}, pu_{k2})$ and $u_l = (u_{l1}, pu_{l2})$. The multiplication of matrices u_k and u_i^{T} is equal to $\langle u_k, u_j \rangle_p$:

$$u_k \cdot u_j^{\top} = (u_{k1}, pu_{k2}) \begin{pmatrix} u_{j1} \\ u_{j2} \end{pmatrix} = \langle u_k, u_j \rangle_p, \forall j \in N_m.$$
 (3.8)

Similarly we obtain

$$u_l \cdot u_j^{\top} = (u_{l1}, pu_{l2}) \begin{pmatrix} u_{j1} \\ u_{j2} \end{pmatrix} = \langle u_l, u_j \rangle_p, \forall j \in N_m.$$

$$(3.9)$$

Using equalities Eq.(3.8) and Eq.(3.9) to matrices $\Phi(u; k, l)$, u_k^{\top} and vectors u_j , we obtain the following equalities

$$\Phi(u;k,l)u_j = \begin{pmatrix} u_{k1} & pu_{k2} \\ u_{l1} & pu_{l2} \end{pmatrix} \begin{pmatrix} u_{j1} \\ u_{j2} \end{pmatrix} = \begin{pmatrix} \langle u_k, u_j \rangle_p \\ \langle u_l, u_j \rangle_p \end{pmatrix}, \forall j \in N_m.$$
 (3.10)

Similarly we obtain the following equalities

$$\Phi(v;k,l)v_j = \begin{pmatrix} v_{k1} & pv_{k2} \\ v_{l1} & pv_{l2} \end{pmatrix} \begin{pmatrix} v_{j1} \\ v_{j2} \end{pmatrix} = \begin{pmatrix} \langle v_k, v_j \rangle_p \\ \langle v_l, v_j \rangle_p \end{pmatrix}, \forall j \in N_m.$$
 (3.11)

Since $B_1(u) = B_1(v) = k$, we have $u_j = v_j = 0, \forall j \in N_m, j < k$. These equalities imply the following equalities

$$\begin{cases}
\langle u_k, u_j \rangle_p = \langle v_k, v_j \rangle_p = 0, \forall j \in N_m, j < k, \\
\langle u_l, u_j \rangle_p = \langle v_l, v_j \rangle_p = 0, \forall j \in N_m, j < l.
\end{cases}$$
(3.12)

These equalities and the equalities Eq.(3.7) imply following equalities

$$\begin{cases}
\langle u_k, u_j \rangle_p = \langle v_k, v_j \rangle_p, \forall j \in N_m, \\
\langle u_l, u_j \rangle_p = \langle v_l, v_j \rangle_p, \forall j \in N_m.
\end{cases}$$
(3.13)

These equalities and equalities Eq.(3.10), Eq.(3.11) imply following equalities

$$\Phi(u;k,l)u_j = \begin{pmatrix} \langle u_k, u_j \rangle_p \\ \langle u_l, u_j \rangle_p \end{pmatrix} = \begin{pmatrix} \langle v_k, v_j \rangle_p \\ \langle v_l, v_j \rangle_p \end{pmatrix} = \Phi(v;k,l)v_j, \forall j \in N_m.$$
(3.14)

Since vectors $u_k = (u_{k1}, pu_{k2})$ and $u_l = (u_{l1}, pu_{l2})$ are linearly independent, the inverse of the matrix $\Phi^{-1}(u; k, l)$ exists. The equalities $\Phi(u; k, l)u_j = \Phi(v; k, l)v_j, \forall j \in N_m$ in Eq.(3.14) implies the following equalities

$$v_j = \Phi^{-1}(v; k, l))\Phi(u; k, l)u_j, \forall j \in N_m.$$
(3.15)

We prove that the matrix $\Phi^{-1}(v; k, l)\Phi(u; k, l)$ is orthogonal. Using the equalities Eq. (3.15) and Eq. (3.7), we obtain the following equality

$$\langle \Phi^{-1}(v;k,l)\Phi(u;k,l)u_j, \Phi^{-1}(v;k,l)\Phi(u;k,l)u_s \rangle = \langle v_j, v_s \rangle = \langle u_j, u_s \rangle$$
(3.16)

for j = k, l and s = k, l. Since the system of two vectors u_k and u_l are a basis in Q^2 , equalities Eq.(3.16) imply the following equalities

$$\langle \Phi^{-1}(v;k,l) \rangle \Phi(u;k,l) x, \Phi^{-1}(v;k,l) \rangle \Phi(u;k,l) y \rangle_p = \langle x,y \rangle_p, \forall x,y \in Q^2.$$
(3.17)

This means that the matrix $\Phi^{-1}(v; k, l)\Phi(u; k, l)$ is orthogonal.

Now we prove the uniqueness of a 2×2 -orthogonal matrix F such that $v_j = Fu_j, \forall j \in N_m$. Assume that a 2×2 -orthogonal matrix F such that $v_j = Fu_j, \forall j \in N_m$. In particularly, we have $v_j = Fu_j$ for j = k, l. These equalities and equalities Eq.(3.15) imply equalities

$$Fu_j = \Phi^{-1}(v; k, l)\Phi(u; k, l)u_j, \forall j = k, l.$$
(3.18)

Since the system of two vectors u_k and u_l are a basis in Q^2 , equalities Eq.(3.18) imply following equalities:

$$Fx = \Phi^{-1}(v; k, l)\Phi(u; k, l)x, \forall x \in Q^2.$$
(3.19)

This means that $F = \Phi^{-1}(v; k, l)\Phi(u; k, l)$. The uniqueness of a 2 × 2-orthogonal matrix F such that $v_j = Fu_j, \forall j \in N_m$, is proved.

Remark 3.6. By theorem 3.5, the system of O(2, p, Q)-invariants obtained in Theorem 3.5 is a complete system of O(2, p, Q)-invariants of m-tuples.

Now we investigate complete systems of invariants of the group $MO(2, p, Q) = O(2, p, Q) \vee Tr(2, p, Q)$ on the set $(Q^2)^m$.

Let $u = (u_1, u_2, \ldots, u_m), v = (v_1, v_2, \ldots, v_m) \in (Q^2)^m$. By Proposition 2.22, $u \stackrel{MO(2, p, Q)}{\sim} v$ if and only if $(u - u_m \cdot 1_m) \stackrel{O(2, p, Q)}{\sim} (v - v_m \cdot 1_m)$. By Proposition 2.24, the function $B(u - u_m \cdot 1_m)$ is an MO(2, p, Q)-invariant.

Let $u = (u_1, u_2, \ldots, u_m), v = (v_1, v_2, \ldots, v_m) \in U_0(m, k)$. Then $u = v = \theta_m$. This implies that $u \stackrel{MO(2, p, Q)}{\sim} v$.

Let $u=(u_1,u_2,\ldots,u_m), v=(v_1,v_2,\ldots,v_m)\in U_1(m,k)$. Assume that u and v be m-tuples such that m=1. Then it is obvious that they are MO(2,p,Q)-equivalent. Assume that $u=(u_1,u_2,\ldots,u_m)\in U_1(m,m)$ and $v=(v_1,v_2,\ldots,v_m)\in U_1(m,m)$. Then it is obvious that they are MO(2,p,Q)-equivalent.

Let $u = (u_1, u_2, \dots, u_m), v = (v_1, v_2, \dots, v_m) \in (Q^2)^m$. By Corollary 2.23, $u \stackrel{MO(2, p, Q)}{\sim} v$ if and only if (m-1)-tuples $(u_1 - u_m, u_2 - u_m, \dots, u_{m-1} - u_m)$ and $(v_1 - v_m, v_2 - v_m, \dots, v_{m-1} - v_m)$ are O(2, p, Q)-equivalent. This Corollary 2.23 and Theorems 3.1, 3.3, 3.5 imply Theorems 3.7, 3.9, 3.10 given below.

Consider the case m=2.

Theorem 3.7. Let $u = (u_1, u_2) \in (Q^2)^2$ and $v = (v_1, v_2) \in (Q^2)^2$.

- (i) Assume that $u \stackrel{MO(2,p,Q)}{\sim} v$. Then the equality $\Psi(u_1 u_2) = \Psi(v_1 v_2)$ holds.
- (ii) Conversely, assume that the equality $\Psi(u_1-u_2) = \Psi(v_1-v_2)$ holds. In this case, $\Psi(u_1-u_2) = 0$ or $\Psi(u_1-u_2) \neq 0$
 - (ii.1) Let $\Psi(u_1 u_2) = 0$. Then $u_1 u_2 = v_1 v_2 = 0$ and $u \stackrel{MO(2,p,Q)}{\sim} v$. In this case the unique $a \in Q^2$ exists such that $v_j = u_j + a, \forall j = 1, 2$. It is equal to $v_2 u_2$.
 - (ii.2) Let $\Psi(u_1-u_2) \neq 0$. Then $u \stackrel{MO(2,p,Q)}{\sim} v$. In this case, only two elements $F_1 \in MO(2,p,Q)$ and $F_2 \in MO(2,p,Q)$ exist such that $v_j = F_1u_j, \forall j = 1,2$, and $v_j = F_2u_j, \forall j = 1,2$. Here $F_1(u_j) = H_1(u_j) + a_1, j = 1,2$, where $H_1 \in SO(2,p,Q)$, $a_1 \in Q^2$, and H_1 has the following form

$$H_1 = \left(\begin{array}{cc} \frac{\langle u_1 - u_2, v_1 - v_2 \rangle_p}{\Psi(u_1 - u_2)} & -p \frac{[(u_1 - u_2) \ (v_1 - v_2)]}{\Psi(u_1 - u_2)} \\ \frac{[(u_1 - u_2) \ (v_1 - v_2)]}{\Psi(u_1 - u_2)} & \frac{\langle u_1 - u_2, v_1 - v_2 \rangle_p}{\Psi(u_1 - u_2)} \end{array} \right),$$

$$det(H_1) = \left(\frac{\langle u_1 - u_2, v_1 - v_2 \rangle_p}{Q(u_1 - u_2)}\right)^2 + p\left(\frac{[(u_1 - u_2) \ (v_1 - v_2)]}{Q(u_1 - u_2)}\right)^2 = 1, \ a_1 = v_1 - H_1 u_1.$$

Here $F_2(u_j) = H_2W(u_j) + a_2, j = 1, 2$, where $H_2 \in SO(2, p, Q)$, $a_2 \in Q^2$, $W = ||w_{kl}||_{k,l=1,2}$, $w_{11} = 1$, $w_{12} = w_{21} = 0$, $w_{22} = -1$, and H_2 has the following form

$$H_2 = \left(\begin{array}{cc} \frac{\langle W(u_1 - u_2), v_1 - v_2 \rangle_p}{\Psi(W(u_1 - u_2))} & -p \frac{[(W(u_1 - u_2)) \ (v_1 - v_2)]}{\Psi(W(u_1 - u_2))} \\ \frac{[(W(u_1 - u_2)) \ (v_1 - v_2)]}{\Psi(W(u_1 - u_2))} & \frac{\langle W(u_1 - u_2), v_1 - v_2 \rangle_p}{\Psi(W(u_1 - u_2))} \end{array} \right),$$

$$det(H_2) = \left(\frac{\langle W(u_1 - u_2), v_1 - v_2 \rangle_p}{\Psi(W(u_1 - u_2))}\right)^2 + p\left(\frac{[(W(u_1 - u_2)) \ (v_1 - v_2)]}{\Psi(W(u_1 - u_2))}\right)^2 = 1, \ a_2 = v_1 - H_2Wu_1.$$

Proof. By Corollary 2.23, two 2-tuples $u=(u_1,u_2)$ and $v=(v_1,v_2)$ are MO(2,p,Q)-equivalent if and only if vectors u_1-u_2 and v_1-v_2 are O(2,p,Q)-equivalent. Hence Theorem 3.1 implies this theorem.

Let m>2 and $u=(u_1,u_2,\ldots,u_m), v\in (Q^2)^m$ be two m-tuples such that $u=(u_1-u_m,u_2-u_m,\ldots,u_{m-1}-u_m)\in U_0(m-1,k), v=(v_1-v_m,v_2-v_m,\ldots,v_{m-1}-v_m)\in U_0(m-1,k),$ where $1\leq k\leq m-1$. Then m-tuples u and v have forms $u=(u_m,u_m,\ldots,u_m)$ and $v=(v_m,v_m,\ldots,v_m)$. It is obvious that they are MO(2,p,Q)-equivalent.

Remark 3.8. Theorem 3.7 means that the function $\Psi(u_1 - u_2)$ is a complete system of MO(2, p, Q)-invariant functions on the set $(Q^2)^2$.

Theorem 3.9. Let m > 2 and $u = (u_1, u_2, ..., u_m), v = (v_1, v_2, ..., v_m) \in (Q^2)^m$ be two m-tuples such that $u = (u_1 - u_m, u_2 - u_m, ..., u_{m-1} - u_m), v = (v_1 - v_m, v_2 - v_m, ..., v_{m-1} - v_m) \in U_1(m-1, k),$ where $1 \le k \le m-1$.

- (i) Assume that k = m 1 and $u \stackrel{MO(2,p,Q)}{\sim} v$. Then the equality $\Psi(u_k u_m) = \Psi(v_k v_m)$ holds. Conversely, assume that k = m 1 and the equality $\Psi(u_k u_m) = \Psi(v_k v_m)$ holds. In this case, $\Psi(u_k u_m) = 0$ or $\Psi(u_k u_m) \neq 0$
 - (i.1) Let $\Psi(u_k u_m) = 0$. Then $u_k u_m = v_k v_m = 0$ and $u \stackrel{MO(2,p,Q)}{\sim} v$. In this case the unique $a \in Q^2$ exists such that $v_i = u_i + a, \forall j \in N_m$. It is equal to $v_m u_m$.
 - (i.2) Let $\Psi(u_k-u_m) \neq 0$. Then $u \stackrel{MO(2,p,Q)}{\sim} v$. In this case, only two elements $F_1 \in MO(2,p,Q)$ and $F_2 \in MO(2,p,Q)$ exist such that $v_j = F_1u_j$ and $v_j = F_2u_j, \forall j \in N_m$. Here $F_1(u_j) = H_1(u_j) + a_1, \forall j \in N_m$, where $H_1 \in SO(2,p,Q)$, $a_1 \in Q^2$, and H_1 has the following form

$$H_{1} = \begin{pmatrix} \frac{\langle u_{k} - u_{m}, v_{1} - v_{m} \rangle_{p}}{\Psi(u_{k} - u_{m})} & -p \frac{[(u_{k} - u_{m}) (v_{k} - v_{m})]}{\Psi(u_{k} - u_{m})} \\ \frac{[(u_{k} - u_{m}) (v_{k} - v_{m})]}{\Psi(u_{k} - u_{m})} & \frac{\langle u_{k} - u_{m}, v_{k} - v_{m} \rangle_{p}}{\Psi(u_{k} - u_{m})} \end{pmatrix},$$
(3.20)

 $det(H_1) = \left(\frac{\langle u_k - u_m, v_k - v_m \rangle_p}{\Psi(u_k - u_m)}\right)^2 + p\left(\frac{[(u_k - u_m) \ (v_k - v_m)]}{\Psi(u_k - u_m)}\right)^2 = 1, \ a_1 = v_k - H_1 u_k.$

Here $F_2(u_j) = H_2W(u_j) + a_2, \forall j \in N_m$, where $H_2 \in SO(2, p, Q)$, $a_2 \in Q^2$, $W = ||w_{kl}||_{k,l=1,2}$, $w_{11} = 1$, $w_{12} = w_{21} = 0$, $w_{22} = -1$, and H_2 has the following form

$$H_{2} = \begin{pmatrix} \frac{\langle W(u_{k}-u_{m}), v_{k}-v_{m} \rangle_{p}}{\Psi(W(u_{k}-u_{m}))} & -p \frac{[(W(u_{k}-u_{m})) \ (v_{k}-v_{m})]}{\Psi(W(u_{k}-u_{m}))} \\ \frac{[(W(u_{k}-u_{m})) \ (v_{k}-v_{m})]}{\Psi(W(u_{k}-u_{m}))} & \frac{\langle W(u_{k}-u_{m}), v_{k}-v_{m} \rangle_{p}}{\Psi(W(u_{k}-u_{m}))} \end{pmatrix},$$
(3.21)

$$det(H_2) = \left(\frac{\langle W(u_k - u_m), v_k - v_m \rangle_p}{\Psi(W(u_k - u_m))}\right)^2 + p\left(\frac{[(W(u_k - u_m)) \ (v_k - v_m)]}{\Psi(W(u_k - u_m))}\right)^2 = 1, \ a_2 = v_k - H_2Wu_k.$$

(ii) Assume that k+1 < m and $u \stackrel{MO(2,p,Q)}{\sim} v$. Then the following equalities hold

$$\begin{cases}
\Psi(u_k - u_m) = \Psi(v_k - v_m), \\
\langle u_k - u_m, u_j - u_m \rangle_p = \langle v_k - v_m, v_j - v_m \rangle_p, \forall j \in N_m, k < j < m.
\end{cases}$$
(3.22)

Conversely, assume that the equalities Eq.(3.22) hold. In this case, only two elements $F_1 \in MO(2,p,Q)$ and $F_2 \in MO(2,p,Q)$ exist such that $v_j = F_1u_j, \forall j \in N_m$, and $v_j = F_2u_j, \forall j \in N_m$. Here $F_1(u_j) = H_1(u_j) + a_1, \forall j \in N_m$, where $H_1 \in SO(2,p,Q)$, $a_1 \in Q^2$, and H_1 has the following form Eq.(3.20). Here $F_2(u_j) = H_2W(u_j) + a_1, \forall j \in N_m$, where $H_2 \in SO(2,p,Q)$, $a_2 \in Q^2$, $W = \|w_{kl}\|_{k,l=1,2}$, $w_{11} = 1$, $w_{12} = w_{21} = 0$, $w_{22} = -1$, H_2 has the form Eq.(3.21) and $a_2 = v_k - H_2Wu_k$.

Proof. A proof follows from Corollary 2.23, Theorem 3.1 and Theorem 3.3.

Let m>2 and $u=(u_1,u_2,\ldots,u_m)\in (Q^2)^m$ be an m-tuple in Q^2 such that $(u_1-u_m,u_2-u_m,\ldots,u_{m-1}-u_m)\in U_2(m-1,k,l)$. In this case, vectors $u_k-u_m=(u_{k1}-u_{m1},u_{k2}-u_{m2})$ and $u_l-u_m=(u_{l1}-u_{m1},u_{l2}-u_{m2})$ are linearly independent. Denote by $E(u-u_m1_m;k,l)$ the following 2×2 -matrix

$$\begin{pmatrix} u_{k1} - u_{m1} & u_{k2} - u_{m2} \\ u_{l1} - u_{m1} & u_{l2} - u_{m2} \end{pmatrix}.$$

Since the vectors $u_k - u_m$ and $u_l - u_m$ are linearly independent, $det(E(u - u_m 1_m; k, l)) \neq 0$. Denote by $\Phi(u - u_m 1_m; k, l)$ the following 2×2 -matrix

$$\begin{pmatrix} u_{k1} - u_{m1} & p(u_{k2} - u_{m2}) \\ u_{l1} - u_{m1} & p(u_{l2} - u_{m2}) \end{pmatrix}.$$

Since $det(\Phi(u - u_m 1_m; k, l) = p \cdot det(E(u - u_m 1_m; k, l))$ and $det(E(u - u_m 1_m; k, l)) \neq 0$, we obtain that $det(\Phi(u - u_m 1_m; k, l) \neq 0$. This implies that the inverse matrix $\Phi^{-1}(u - u_m 1_m; k, l)$ exists.

Theorem 3.10. Let m > 2. Assume that $u = (u_1, u_2, ..., u_m)$ and $v = (v_1, v_2, ..., v_m)$ are (m-1)-tuples such that $(u_1 - u_m, u_2 - u_m, ..., u_{m-1} - u_m) \in U_2(m-1, k, l), (v_1 - v_m, v_2 - v_m, ..., v_{m-1} - v_m) \in U_2(m-1, k, l)$, where $1 \le k < l \le m-1$.

(i) Assume that $u \stackrel{MO(2,p,Q)}{\sim} v$. Then the following equalities hold:

$$\begin{cases}
\langle u_k - u_m, u_j - u_m \rangle_p = \langle v_k - v_m, v_j - v_m \rangle_p, \forall j \in N_m, k \le j \le m - 1; \\
\langle u_l - u_m, u_j - u_m \rangle_p = \langle v_l - v_m, v_j - v_m \rangle_p, \forall j \in N_m, l \le j \le m - 1.
\end{cases}$$
(3.23)

(ii) Conversely, assume that the equalities Eq.(3.23) hold. Then $u \stackrel{MO(2,p,Q)}{\sim} v$. In this case, the unique $F \in MO(2,p,Q)$) exists such that $v_j = F(u_j), \forall j \in N_m$, and F has the following form $F(u_j) = (\Phi^{-1}(v - v_m 1_m; k, l)\Phi(u - u_m 1_m; k, l))(u_j) + a, \forall j \in N_m$, where $a = v_k - (\Phi^{-1}(v - v_m 1_m; k, l)\Phi(u - u_m 1_m; k, l))(u_k)$.

Proof. A proof follows from Corollary 2.23 and Theorem 3.5.

References

- [1] M. Berger, Geometry I, Springer-Verlag, Berlin, Heidelberg, 1987.
- [2] J. A. Dieudonné, J.B. Carrell, Invariant Theory, Academic Press, New-York, London, 1971.
- [3] O. Gűrsoy, M. İncesu, LS(2)-equivalence conditions of control points and application to planar Bezier curves, New Trends in Mathematical Sciences, 3, no. 5 (2017) 70 -84. https://doi.org/10.20852/ntmsci.2017.186.
- [4] R.Igor Shafarevich, O. Alexey Remizov, Linear Algebra and Geometry, Springer-Verlag, Berlin Heidelberg, 2013
- [5] R. Hőfer, m-point invariants of real geometries, Beitrage Algebra Geom., 40 (1999) 261-266.
- [6] D. Khadjiev, Application of the Invariant Theory to the Differential Geometry of Curves, Fan Publisher, Tashkent, 1988, [in Russian].
- [7] D. Khadjiev, Y. Gőksal, Applications of hyperbolic numbers to the invariant theory in two-dimensional pseudo-Euclidean space, Adv. Appl. Clifford Algebras, 26 (2016) 645-668.https://doi.org/10.1007/s00006-015-0627-9.
- [8] D. Khadjiev, Projective invariants of m-tuples in the one-dimensional projective space, Uzbek Mathematical Journal, 1 (2019) 61-73. https://doi:10.29229/uzmj.2019-1-6.
- [9] D. Khadjiev, Sh. Ayupov, G. Beshimov, Complete systems of invariant of m-tuples for fundamental groups of the two-dimensional Euclidian space, Uzbek Mathematical Juornal, 1 (2020) 57-84. https://DOI: 10.29229/uzmj.2020-1-6
- [10] D. Khadjiev, İ. Ören, G. Beshimov; Complete systems of Galileo invariants of a motion of parametric figure in the three dimensional Euclidean space, International Electronic Journal of Geometry, -2022. -15.-No2.-P.334-342.
- [11] D. Khadjiev, Sh. Ayupov, G. Beshimov, Global invariants of topological figures in the two-dimensional Euclidean space, Uzbek Mathematical Juornal, 1 (2023) 52-62. https://DOI: 10.29229/uzmj.2023-1-7 3.
- [12] İ. Őren, D. Khadjiev, Ő. Peken, G. Beshimov; Global invariants of objects in two-dimensional Minkowski space, Journal of Dynamical Systems and Geometric Theories, 2 (2022) 249-273, DOI: 10.1080/1726037X.2022.2120271
- [13] D. Khadjiev, İ. Őren, G. Beshimov; Invariants of immersions on n-dimensional affine manifold, G.U. J. Sci. 37(2) (2024) DOI: 10.35378/gujs.1037048
- [14] D. Khadjiev, İ. Őren, G. Beshimov; Invariants of a mapping of a set to the two-dimensional Euclidean Space, Commun.Fac.Sci.Univ.Ank.Ser. A1 Math. Stat., 1 (2023) 137158, DOI:10.31801/cfsuasmas.1003511
- [15] D. Khadjiev, G. R. Beshimov, Invariants of sequences for the group SO(2, p, Q) of a two-dimensional bilinear-metric space over the field of rational numbers, Itogi Nauki i Tekhniki. Ser. Sovrem. Mat. i ee Pril. Temat. Obz., 2021, Vol. 197, pp. 4655 (in Russian).

- [16] J. L. Mundy, A. Zisserman, D. Forsyth (Eds.), Applications of Invariance in Computer vision, Springer-Verlag, Berlin, Heidelberg, New York, 1994.
- [17] D. Mumford, J. Fogarty, Geometric Invariant Theory, Springer-Verlag, Berlin, Heidelberg, 1994.
- [18] J. O'Rourke, Computational Geometry in C, Cambridge University Press, 1997.
- [19] İ. Őren, Equivalence conditions of two Bézier curves in the Euclidean geometry, Iranian Journal of Science and Technology, Transactions A: Science (ISTT), 42, no. 3 (2018) 1563-1577. https://doi.org/10.1007/s40995-016-0129-1.
- [20] İ. Őren, Invariants of m-vectors in Lorentzian geometry, International Electronic Journal of Geometry, 9, no.1 (2016) 38-44.
- [21] T. H. Reiss, Recognizing Planar Objects Using Invariant Image Features, Springer-Verlag, Berlin, Heidelberg, New York, 1993.
- [22] K. S. Sibirskii, Introduction to the Algebraic Invariants of Differential Equations, Manchester University Press, New York, 1988.
- [23] T. A. Springer, Invariant Theory, Springer-Verlag, Berlin, Heidelberg, New York, 1977.
- [24] H. Weyl, The Classical Groups: Their Invariants and Representations, Princeton Univ. Press, Princeton, New Jersey, 1946.
- [25] W. H. Greub, Linear Algebra, Springer-Verlag, New York Inc., 1967.

Beshimov Gayrat Ruzinazarovich, Renaissance University of Education, Tashkent, Uzbekistan, Cyber University, Tashkent, Uzbekistan email: gayratbeshimov@gmail.com