
Differential Game of One Evader and Multiple Pursuers ... 113

Uzbek Mathematical Journal
2025, Volume 69, Issue 4, pp.113-127
DOI: 10.29229/uzmj.2025-4-12

Differential game of one evader and multiple pursuers with
exponential integral constraints
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Abstract. We analyze an evasion differential game involving one evader and multiple pursuers in
Rn. The control functions of the players are subject to exponential integral constraints to ensure
bounded energy consumption. Evasion is considered possible if, for any time t, the position of the
evader differs from the positions of all the pursuers. In this work, we establish a sufficient condition
for the possibility of evasion. We construct an admissible evasion strategy and demonstrate that, for
any number of pursuers m, evasion is possible. Additionally, we show that the number of maneuvers
required for evasion does not exceed m.
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1. Introduction

Pursuit-evasion games have been a significant topic in differential game theory, with various ap-
proaches and results developed over the years. An enormous amount of work has been devoted to
studying problems (for example, Azamov [1], Azamov et al. [2, 3, 4, 5] Pontryagin [21], Petrosyan
[19]).

Several studies considered pursuit-evasion differential games with many players such as Chen et
al. [6], Garcia et al. [7], Ibragimov and Salimi [9], Ibragimov [11], Ibragimov and Tursunaliev [13],
Kumkov et al. [16], Kuchkarov et al. [14], Petrov [20], Ruziboev et al. [22, 23], Salimi and Ferrara
[31], and Von Moll et al. [34].

Further extensions of the pursuit-evasion problem have been considered in various works. Ibragimov
et al. [8] studied an evasion differential game that involves one evader and many pursuers. The
dynamics of the players are described by linear differential equations, with integral constraints applied
to the control functions of the players. They demonstrated that evasion is possible for any positive
integer m by showing that the total energy of the pursuers does not exceed the energy of the evader.
Ibragimov et al. [12], Pansera et al. [18], Sharifi et al. [30] and Mamadaliev et al. [17] contributed to
previous results in pursuit-evasion games and extended the analysis by considering integral constraints
on the motion capabilities of the players.

Many studies have considered different variations of the above problem. Kuchkarov et al. [15]
analyzed a differential game of the approach of many pursuers and one evader described by linear
systems of the same type. They obtained estimates for the payoff function of the game that players
can ensure and provide an explicit description of strategies. Ibragimov et al. [10] explored admissible
and adaptive strategies in multi-agent interactions.

Samatov and Soyibboev [25] studies a pursuit differential game in which players move under inertial
dynamics controlled by acceleration vectors. Using the parallel approach strategy, optimal interception
is ensured against any evader action. The capture set is shown to be a linear combination of two
Apollonius sets defined by the players’ initial positions and velocities.

In addition, comparisons with existing work help illustrate the novelty of the approach and its
potential applications in real-world scenarios. Rilwan et al. [24], Satimov [28, 29], Samatov and
Uralova [26, 27], Scott and Leonard [33], Shchelchkov [32], Zhao et al. [35], Zhang et al. [36], and
Zhou et al. [37] provided further insight into related topics.

In many practical scenarios, the accumulated heat in a system depends on the control effort applied
over time, but past inputs contribute less to the current thermal state due to heat dissipation. To
model this behavior, we impose an exponentially weighted integral constraint on the control input

t∫
0

e−k(t−s)|u(s)|2ds ≤ ρ2, ∀t ≥ 0, (1.1)
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where u(s) is the control input (e.g., power in a heating system), k > 0 is the thermal dissipation rate,
which governs how fast past control inputs lose their impact due to heat dissipation, ρ2 is a bound on
the effective thermal load, the exponential weight e−k(t−s) ensures that older control inputs contribute
less to the current heat state. If we multiply the inequality (1.1) by ekt and denote eks/2u(s) by ū(s),
then the inequality (1.1) takes the form

t∫
0

|ū(s)|2ds ≤ ρ2ekt, ∀t ≥ 0.

Clearly, the control u(s) is uniquely defined by the control ū(s). In the present paper, we consider
thermal type (exponential) constraints on the control functions of players.

We show that evasion is possible from any initial position of the players. In addition, we construct
an explicit strategy for the evader and then prove the admissibility of the strategy. To the best of
our knowledge, no prior research has addressed the specific simple motion evasion differential game
with exponential integral constraints. The main difficulties in solving the problem are constructing
an evasion strategy and proving that the constructed strategy guarantees evasion.

In this work, the construction of strategy requires the identification of approach times θi. Further-
more, our approach requires θi to be bounded, as well as new techniques to estimate the distance
between a pursuer xp(t) and the evader. Note that according to the strategy constructed, the evader
moves with a positive speed in a vicinity of the y-axis, for any control functions of the pursuers on the
time interval [0, T ]. The fact that each maneuvering interval of the evader is contained within [0, T ]
plays a crucial role in establishing key estimates required for the proof of the main result.

2. Statement of problem

We consider a simple motion evasion differential game of one evader y andm pursuers xi, i = 1, ...,m,
in Rn, n ≥ 2. Game is described by the following equations:

ẋi = ui, xi(0) = x0
i , i = 1, . . . ,m,

ẏ = v, y(0) = y0,
(2.1)

where xi, x
0
i , y, y

0, ui, v ∈ Rn, n ≥ 2, x0
i 6= y0, i = 1, ...,m and u1, . . . , um are the control parameters of

pursuers and v is that of evader.

Definition 2.1. A measurable function ui(t), t ≥ 0, is called an admissible control of the pursuer xi
if ∫ t

0

|ui(s)|2ds ≤ ρ2
i e

2kt, i = 1, . . . ,m, (2.2)

where ρ1, ρ2, ..., ρm and k are given positive numbers.

Definition 2.2. A measurable function v(t), t ≥ 0, is called an admissible control of the evader y if∫ t

0

|v(s)|2ds ≤ σ2e2kt, (2.3)

where σ is a given positive number.

Definition 2.3. A function V : [0,∞)× R(2m+1)n → Rn,

(t, y, x1, ..., xm, u1, ..., um) 7→ V (t, y, x1, ..., xm, u1, ..., um),

is called a strategy of evader if the following initial value problem

ẋi = ui, xi(0) = x0
i , i = 1, 2, . . . ,m,

ẏ = V (t, y, x1, ..., xm, u1, ..., um), y(0) = y0,
(2.4)
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has a unique solution (x1(t), . . . , xm(t), y(t)), t ≥ 0, for any admissible controls of the pursuers ui =
ui(t), i = 1, ...,m, and along this solution the following inequality∫ t

0

|V (s, y(s), x1(s), . . . xm(s), u1(s), . . . , um(s))|2ds ≤ σ2e2kt.

holds.

Definition 2.4. If there exists a strategy V of the evader such that for any admissible controls of
pursuers xi(t) 6= y(t) for all t ≥ 0, and i = 1, . . . ,m, then we say that evasion is possible.

Problem 1. Construct a strategy V for the evader y and find a condition for the parameters ρi,
i = 1, ...,m, σ, which guarantees the evasion in game (2.1)-(2.3).

Note that the evader knows the values y(t), x1(t), . . . , xm(t), u1(t), . . . , um(t) at the current time t.
During the game, the pursuers apply arbitrary controls u1(t), . . . , um(t), t ≥ 0, and attempt to realize
the equation xi(t) = y(t) at least for one i ∈ {1, 2, ...,m}, whereas the evader strives to ensure the
inequalities xi(t) 6= y(t) for all i = 1, ...,m and t ≥ 0.

3. The main result

We consider the evasion problem in the case where n = 2 and prove a theorem on evasion. The
following presents the main result of this paper.

Theorem 3.1. If
ρ2

1 + · · ·+ ρ2
m < σ2, (3.1)

then evasion is possible in game (2.1)-(2.3).

Without loss of generality, we assume that y0 = (0, 0), that is, the evader is at the origin at the
initial time. Then, we construct a strategy for the evader which guarantees evasion. There is no
restriction in assuming that J = {1, 2, ...,m} meaning that only the first m pursuers x0

1, x
0
2, ..., x

0
m

are in the upper half plane. Let J = {i | x0
i2 > 0, 1 ≤ i ≤ m}. In Fig. 3, this set of indices is

J = {1, 2, 3, 4, 5}.

Figure 3. Example of initial states of players.

The solutions of the initial value problem (2.1) are given by

xi(t) = x0
i +

∫ t

0

ui(s)ds, i = 1, ...,m, y(t) = y0 +

∫ t

0

v(s)ds. (3.2)

We prove the theorem in several subsections.
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3.1. Notations. Let α be any number satisfying the condition

0 < α <
(σ − ρ)2

2(max1≤i≤m |y0
2 − x0

i2|+ 1)
, ρ = (ρ2

1 + ...+ ρ2
m)1/2. (3.3)

We choose a number a1 from the condition

0 < a1 < min

{
1

2
,
(σ − ρ)2

4α
,
σ2

8α
, min

1≤i≤m
|y0 − x0

i |
}
. (3.4)

Let

T0 =
1

α
max

1≤i≤m
|y0

2 − x0
i2|, T = T0 +

2a1

α
, β =

α3

4 · 64σ6e6kT
. (3.5)

We observe β < 1
2

since α < σ, k > 0.
Let a sequence {ak}∞k=1 be defined by the formula ak+1 = β · a4

k, k = 1, 2, ... It is not difficult to
prove that this sequence has the following:

Property 3.2.
∑∞

k=p+1 ak ≤ 2ap+1 for any p ≥ 1.

Proof. Since β < 1
2
, a1 <

1
2
, we have ak+1 < a4

k, k = 1, 2, ..., and hence, ak < 1, k = 1, 2, ... Then

∞∑
k=p+1

ak = ap+1 + ap+2 + ... < ap+1 + a4
p+1 + a16

p+1 + ... < ap+1 + a2
p+1 + a3

p+1 + ... =
ap+1

1− ap+1

< 2ap+1.

The proof of the property is complete. �

3.2. Definitions of approach times. Let θ0 = 0 and θ1 > 0 be the first time at which

(i) |xi(θ1)− y(θ1)| = a1,

(ii) xi2(θ1) > y2(θ1),

for some i ∈ J . Note that such a time θ1 may not exist. If there are several pursuers xi that satisfy
conditions (i) and (ii), (for example, θ1 is an a1-approach time for both pursuers x1 and x2, but θ1

cannot be an a1-approach time for both pursuers x3 and x4 because it does not satisfy condition (ii)
(see Fig. 4)), then we can assume, by relabeling if necessary, that one of such pursuers xi is x1. We
call θ1 the a1-approach time. The times θi are unspecied and depend on the evaders strategy and the
controls of the pursuers. It is important to note the fact that all the numbers θi will be in the interval
[0, T ], which will be established in Subsection 3.4.

Figure 4. a1-approach time.
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If θ1, θ2, ..., θk−1, θ1 < θ2 < ... < θk−1, are a1−, a2−, ..., ak−1− approach times, respectively, then we
define θk > θk−1 to be the ak-approach time if the following conditions are satisfied

(i) |xi(θk)− y(θk)| = ak,

(ii) xi2(θk) > y2(θk),

for some i ∈ J . If there are more than one such pursuers xi, then we assume without loss of generality
that one of them is xk. In this way, we define ak-approach times, θk, k ∈ J0 = {1, 2, ...,m0}, i.e.,
θ1, θ2, ..., θm0

, where m0 is a positive integer. Note that ak-approach times θk will not necessarily be
defined for all pursuers xi, i ∈ J . We will establish that at most one approach time will be defined for
each pursuer xi, i ∈ J , and therefore m0 ≤ m.

Let

θ′k = θk +
2ak
α
, k = 1, 2, ...,m0.

Note that we have defined θk and θ′k only for k = 1, 2, ...,m0.

3.3. A function assigning a maneuver for the evader. Denote Ik = ∪m0

j=k[θj, θ
′
j), Im0+1 = ∅. We

define a function r : [0, T ] → {0, 1, . . . ,m0}, which plays a key role in assigning a maneuver for the
evader. Set

r(t) =

{
0, t ∈ [0, T ] \ I1,

k, t ∈ [θk, θ
′
k] \ Ik+1, k = 1, ...,m0.

(3.6)

The function r(t) has the following property.

Property 3.3. Let m0 > 1. Then, for k = 1, 2, . . . , (m0 − 1),

(i) If θ′k ≤ θk+1, then r(t) = k for θk ≤ t < θ′k,

(ii) If θk+1 ≤ θ′k, then r(t) = k for θk ≤ t < θk+1.

Proof. Assume that θ′k ≤ θk+1. Then [θk, θ
′
k) \ Ik+1 = [θk, θ

′
k) since θ′k ≤ θk+1 < θk+2 < ... and

[θk, θ
′
k) ∩ Ik+1 = ∅. Therefore, r(t) = k for t ∈ [θk, θ

′
k). This proves item (i).

To prove item (ii), suppose that θk+1 ≤ θ′k. Since θk < θk+1 < · · · < θm0
, we have [θk, θk+1) ⊂

[θk, θ
′
k) \ Ik+1. Therefore, r(t) = k for t ∈ [θk, θk+1) by the definition of r(t) (3.6). �

Example 3.4. If

0 = θ0 < θ1 < θ2 < θ′2 < θ′1 < θ3 < θ4 < θ′3 < θ′4 < θ5 < θ′5,

then r(t) has the graph shown in Fig. 5.

3.4. Construction and admissibility of strategy for the evader. We now construct a strategy
for the evader. Let ui(t), i = 1, ...,m, be arbitrary controls of pursuers. Set

v(t) = V0(t) =

0, α+

(
m∑
i=1

|ui(t)|2
)1/2

 , t ∈ [0, T ] \ I1, (3.7)

v(t) = Vr(t) = (Vr1(t), U(t)), t ∈ [0, T ] ∩ I1, (3.8)

where r = r(t), Vk(t) = (Vk1(t), U(t)), θk ≤ t < θ′k, k = 1, . . . ,m0, is defined as follows

Vk1(t) =

{
α+ |uk1(t)|, y1(θk) ≥ xk1(θk),

−(α+ |uk1(t)|), y1(θk) < xk1(θk),
(3.9)

U(t) = α+

(
m∑
i=1

u2
i2(t)

)1/2

.
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Figure 5. The graph of function r(t).

Note that U(t) doesn’t depend on k. Finally, let

v(t) =

0,

(
m∑
i=1

|ui(t)|2
)1/2

 , t > T. (3.10)

Equation (3.8) shows that the function r = r(t) assigns the control Vr(t) for v(t).
We now show that the strategy defined by equations (3.7)-(3.10) is admissible. Indeed, let we denote

ϕ(t) =


(0, α), t ∈ [0, T ) \ I1

(α, α), t ∈ I1

(0, 0), t > T

, ψ(t) =


(

0, (
∑m

i=1 |ui(t)|2)
1/2
)
, t ∈ [0, T ] \ I1,(

|ur1(t)|, (
∑m

i=1 u
2
i2(t))

1/2
)
, t ∈ I1,(

0, (
∑m

i=1 |ui(t)|2)
1/2
)
, t > T.

Note that ∫ t

0

|ϕ(s)|2ds ≤ 2α2T, |ψ(t)|2 ≤
m∑
i=1

|ui(t)|2. (3.11)

Clearly, for v(t) defined by (3.7)-(3.10) we have v2
1(t) + v2

2(t) = |ϕ(t) + ψ(t)|2. Therefore, using the
Minkowskii inequality and (3.11) we obtain, for t ≥ 0,

(∫ t

0

|v(s)|2ds
)1/2

=

(∫ t

0

|ϕ(s) + ψ(s)|2ds
)1/2

≤
(∫ t

0

|ϕ(s)|2ds
)1/2

+

(∫ t

0

|ψ(s)|2ds
)1/2

≤ (2α2T )1/2 +

(∫ t

0

m∑
i=1

|ui(s)|2ds
)1/2

≤ α
√

2T +

(
m∑
i=1

ρ2
i e

2kt

)1/2

= α
√

2T + ρekt ≤ σekt,

since by definition of T, T0 and α

α
√

2T = α

√
2

(
T0 +

2a1

α

)
=

√
2α

(
max

i=1,...,m
|y0

2 − x0
i2|+ 2a1

)

≤

√
2α

(
max

i=1,...,m
|y0

2 − x0
i2|+ 1

)
≤ σ − ρ.

Here, in the last inequality we used (3.3). Thus, the evasion strategy (3.7)-(3.10) is admissible.
Next, we prove the following statement.
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3.5. One characteristics of the strategy.

Lemma 3.5. If the evader uses strategy (3.7)-(3.10), then

(a) For all k ∈ J0 = {1, ...,m0}, we have (i) θk ≤ T0 and (ii) θ′k ≤ T.
(b) If y0

2 ≥ x0
i2 for some i ∈ {1, ...,m}, then y2(t) > xi2(t) for all t > 0.

Proof. We first show that y2(T0) ≥ xi2(T0) for all i = 1, . . . ,m. Indeed, by (3.7)-(3.9) we have

v2(t) ≥ α+

(
m∑
i=1

u2
i2(t)

)1/2

≥ α+ |ui2(t)|, 0 ≤ t ≤ T, (3.12)

and therefore,
d

dt
(y2(t)− xi2(t)) = (v2(t)− ui2(t)) ≥ (v2(t)− |ui2(t)|) ≥ α > 0. (3.13)

Hence, y2(t)− xi2(t), 0 ≤ t ≤ T , increases strictly. Since T0 < T , by (3.13) we have

y2(T0)− xi2(T0) = y0
2 − x0

i2 +

∫ T0

0

(v2(s)− ui2(s))ds ≥ y0
2 − x0

i2 + αT0 = y0
2 − x0

i2 + max
1≤j≤m

|y0
2 − x0

j2| ≥ 0.

Thus, y2(T0) ≥ xi2(T0) for all i = 1, . . . ,m.
Next, since v2(t) ≥ α + |ui2(t)| for T0 ≤ t ≤ T (see Fig.4a), and v2(t) ≥ |ui2(t)| for t > T (see

Fig.4b), therefore for t > T0 we have

y2(t)− xi2(t) = y2(T0)− xi2(T0) +

∫ t

T0

(v2(s)− ui2(s))ds

≥ y2(T0)− xi2(T0) +

∫
[T0,t]∩[T0,T ]

(α+ |ui2(s)| − ui2(s))ds (3.14)

> y2(T0)− xi2(T0) ≥ 0.

Thus, y2(t) > xi2(t) for all t > T0 and i = 1, . . . ,m.

Figure 6. The location of t relative to T .

In particular, we obtain that there is no ak-approach time θk in the time interval [T0,∞), since by
definition of an ak-approach time θk, one has to have y2(θk) < xk2(θk). This is impossible for θk ≥ T0

since as proved above y2(t) ≥ xk2(t) for all t ≥ T0. Hence, θk ≤ T0 for all k = 1, ..,m0.
Next, by definition of θ′k we have

θ′k = θk +
2ak
α
≤ T0 +

2a1

α
= T, (3.15)

and the proof of item (a) of Lemma 3.5 follows. In particular, (3.15) implies that I1 ⊂ [0, T ].

Remark 3.6. Due to the inclusion I1 ⊂ [0, T ] the set [0, T ] ∩ I1 in (3.8) is equal to I1.

To show item (b), using y0
2 ≥ x0

i2 we observe that for t > 0

y2(t)− xi2(t) = y0
2 − x0

i2 +

∫ t

0

(v2(s)− ui2(s))ds ≥
∫

[0,t]∩[0,T ]

(α+ |ui2(s)| − ui2(s))ds > 0.

The intersection [0, t] ∩ [0, T ] in (3.16) is equal to either [0, t] (see Fig.5a) or [0, T ] (see Fig.5b).
Thus, we have y2(t) > xi2(t) for all t > 0 by (3.16). This completes the proof of Lemma 3.5. �
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Figure 7. The location of t relative to T .

3.6. Fictitious evader zp. Take any integer p ∈ {1, . . . ,m0} and assume that θp is the ap-approach
time of the pursuer xp to the evader y. We will estimate the distance between xp(t) and y(t) on
[θp, θ

′
p]. To this end, we introduce a fictitious evader (FE) zp whose motion is described by the

following equation
żp = wp, zp(θp) = y(θp),

where wp is the control parameter of zp. The fictitious evader zp(t) is defined only on the interval
[θp, θ

′
p] and

wp(t) = Vp(t) = (Vp1(t), U(t)), θp ≤ t ≤ θ′p. (3.16)

The trajectory of FE

zp(t) = y(θp) +

∫ t

θp

Vp(s)ds, θp ≤ t ≤ θ′p.

Since by (3.16) v2(t) = U(t), therefore

zp2(t) = zp2(θp) +

∫ t

θp

U(s)ds = y2(θp) +

∫ t

θp

v2(s)ds = y2(t), θp ≤ t ≤ θ′p.

We now demonstrate that ∫ θ′p

θp

|Vp(s)|2ds ≤ σ2e2kT . (3.17)

By denoting

ϕ1(t) = (α, α), ψ1(t) =

|up1(t)|,
(

m∑
i=1

u2
i2(t)

)1/2


we have

|Vp(t)|2 = V 2
p1(t) + U2(t) = (α+ |up1(t)|)2 +

α+

(
m∑
i=1

u2
i2(t)

)1/2
2

= |ϕ1(t) + ψ1(t)|2, θp ≤ t ≤ θ′p.

Therefore, using the Minkowskii inequality we obtain(∫ θ′p

θp

|Vp(s)|2ds
)1/2

=

(∫ θ′p

θp

|ϕ1(s) + ψ1(s)|2ds
)1/2

≤
(∫ θ′p

θp

|ϕ1(s)|2ds
)1/2

+

(∫ θ′p

θp

|ψ1(s)|2ds
)1/2

≤ (2α2(θ′p − θp))1/2 +

(∫ θ′p

θp

m∑
i=1

|ui(s)|2ds
)1/2

, (3.18)

since by (2.2) and (3.15) we have
∫ θ′p
θp
|ui(s)|2ds ≤ ρ2

i e
2kθ′p ≤ ρ2

i e
2kT , and then it follows from (3.18)

that(∫ θ′p

θp

|Vp(s)|2ds
)1/2

≤ 2
√
αap +

(
m∑
i=1

ρ2
i e

2kT

)1/2

= 2
√
αap +

(
ρ2e2kT

)1/2
= 2
√
αap + ρekT < σekT .

since by (3.4) ap ≤ a1 <
(σ−ρ)2

4α
, and hence (3.17) is true.
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3.7. Distance between fictitious evader and pursuer.

Lemma 3.7. Let the pursuer xp apply an arbitrary admissible control up(t) on θp ≤ t ≤ θ′p. Then

|zp(t)− xp(t)| >
αa2

p

6σ2e2kT
, θp ≤ t ≤ θ′p, and y2(t)− xp2(t) ≥ ap, t ≥ θ′p. (3.19)

Proof. Let θp ≤ t < θ′p and for definiteness assume that xp1(θp) ≤ y1(θp). Then by (3.9) we have
Vp1(t) = α+ |up1(t)|. Therefore,

|zp(t)− xp(t)| ≥ zp1(t)− xp1(t) = y1(θp)− xp1(θp) +

∫ t

θp

(Vp1(s)− up1(s))ds

≥
∫ t

θp

(α+ |up1(s)| − up1(s))ds ≥ α(t− θp). (3.20)

On the other hand,

|zp(t)− xp(t)| ≥ |zp(θp)− xp(θp)| −
∫ t

θp

|Vp(s)− up(s)|ds. (3.21)

The integral in (3.21) can be estimated by using the Cauchy-Schwartz inequality as follows

∫ t

θp

|Vp(s)− up(s)|ds ≤
(∫ t

θp

12ds

∫ t

θp

|Vp(s)− up(s)|2ds
)1/2

≤
(

(t− θp)
∫ t

θp

2(|Vp(s)|2 + |up(s)|2)ds

)1/2

.

(3.22)

Since t− θp < θ′p − θp ≤ T by (3.15), we have∫ t

θp

|Vp(s)|2ds ≤ σ2e2kT ,

∫ t

θp

|up(s)|2ds ≤ ρ2
pe

2kT ≤ σ2e2kT ,

then it follows from (3.22) that∫ t

θp

|Vp(s)− up(s)|ds ≤ (t− θp)1/2
(
4σ2e2kT

)1/2
= 2σ(t− θp)1/2ekT .

By using (3.23) and the equation |zp(θp)− xp(θp)| = ap, (3.21) yields that

|zp(t)− xp(t)| ≥ ap − 2σ(t− θp)1/2ekT . (3.23)

It is easily seen from (3.20) and (3.23) that

|zp(t)− xp(t)| ≥ h(t) = max{h1(t), h2(t)}, t ≥ θp, (3.24)

where
h1(t) = α(t− θp), h2(t) = ap − 2σ(t− θp)1/2ekT .

Note that the funcion h1(t), t ≥ θp, is increasing, and the function h2(t), t ≥ θp, is decreasing,
therefore, it is not difficult to see that the function h(t), t ≥ θp, attains its minimum at the point
t = t∗ where

h1(t) = h2(t), t ≥ θp. (3.25)

Let (t− θp)1/2 = d. Then equation (3.25) takes the form

αd2 = ap − 2σdekT ,
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or αd2 + 2σekTd− ap = 0. This equation has the following positive root

d∗ =
−σekT +

√
σ2e2kT + αap
α

=
ap

σekT +
√
σ2e2kT + αap

.

Then

min
t≥θp

h(t) = h(t∗) = h1(t∗) = αd2
∗ =

αa2
p(

σekT +
√
σ2e2kT + αap

)2 . (3.26)

Since by (3.4) a1 <
1
2
< e2kT , and in view of α < σ2, we have αap ≤ αa1 < σ2e2kT , therefore (3.26)

implies that

|zp(t)− xp(t)| ≥ min
t≥θp

h(t) >
αa2

p

6σ2e2kT
, θp ≤ t ≤ θ′p. (3.27)

Next, using the fact that y2(θp)−xp2(θp) ≥ −|y(θp)− zp(θp)| = −ap, and the equality zp2(θp) = y2(θp)
by (3.17) we obtain

zp2(θ′p)− xp2(θ′p) = y2(θp)− xp2(θp) +

∫ θ′p

θp

(U(s)− up2(s))ds ≥ −ap +

∫ θ′p

θp

α+

(
m∑
i=1

u2
i2(s)

)1/2

− up2(s)

 ds

≥ −ap + α

∫ θ′p

θp

ds = −ap + α
(
θ′p − θp

)
= −ap + α

(
θp +

2ap
α
− θp

)
= ap.

(3.28)
Finally, let t ≥ θ′p. By (3.17) y2(θ′p) = zp2(θ′p), and by (3.7), (3.8) and (3.10), v2(t) ≥ |up2(t)|. Then

using (3.10), (3.28) we get

y2(t)− xp2(t) = zp2(θ′p)− xp2(θ′p) +

∫ t

θ′p

(v2(s)− up2(s))ds ≥ zp2(θ′p)− xp2(θ′p) ≥ ap, t ≥ θ′p.

Thus, we have the following inequalities:

|zp(t)− xp(t)| >
αa2

p

6σ2e2kT
, θp ≤ t ≤ θ′p, (3.29)

y2(t)− xp2(t) ≥ ap, t ≥ θ′p. (3.30)

This completes the proof of Lemma 3.7. �

3.8. Distance between real and fictitious evader.

Lemma 3.8. The following estimate holds

|y(t)− zp(t)| ≤ 6σekT
√
ap+1

α
, θp ≤ t ≤ θ′p. (3.31)

Proof. Since zp(θp) = y(θp), we have

|y(t)− zp(t)| =
∣∣∣∣∣
∫ t

θp

(v(s)− Vp(s))ds
∣∣∣∣∣ , θp ≤ t ≤ θ′p. (3.32)

By (3.8) and (3.17)

v(t) = (Vr1(t), U(t)), Vp(t) = (Vp1(t), U(t)), θp ≤ t < θ′p. (3.33)

Consider two cases: (i) θ′p ≤ θp+1 and (ii) θp+1 ≤ θ′p.
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Figure 8. Points y(t) and zp(t) are on one horizontal line.

Case (i). Let θ′p ≤ θp+1. Then by item (i) of Property 3.3 r = r(t) = p for θp ≤ t < θ′p. Therefore
by (3.11) we have v(t) = Vp(t), θp ≤ t < θ′p. Hence, by (3.10)

|y(t)− zp(t)| = 0. (3.34)

Case (ii). Assume now θp+1 ≤ θ′p. Then by item (ii) of Property 3.3 we have v(t) = Vp(t),
θp ≤ t < θp+1, therefore, y(t) = zp(t), for t ∈ [θp, θp+1], and so (3.31) satisfied. This means that the
trajectories of y(t) and zp(t) coincide on [θp, θp+1] (see Fig.8). Then, starting from the time θp+1 the
evader applies the maneuver Vp+1(t) against the pursuer xp+1.

Next, we estimate |y(t)− zp(t)| for t ∈ [θp+1, θ
′
p), we then obtain

|y(t)− zp(t)| =

∣∣∣∣∣
∫ t

θp+1

(v(s)− Vp(s))ds
∣∣∣∣∣ ≤

∫ t

θp+1

|v(s)− Vp(s)|ds

≤
∫

[θp+1,t)\Ip+1

|v(s)− Vp(s)|ds+

∫
[θp+1,t)∩Ip+1

|v(s)− Vp(s)|ds. (3.35)

Since by definition r(t) = p for t ∈ [θp, θ
′
p) \ Ip+1, and [θp+1, t) \ Ip+1 ⊂ [θp, θ

′
p) \ Ip+1 for t ∈ [θp, θ

′
p),

therefore we have r = r(t) = p, and hence, v(t) = Vp(t) for t ∈ [θp+1, t) \ Ip+1. Consequently, the first
integral in (3.35) is 0, and so (3.35) takes the form

|y(t)− zp(t)| ≤
∫

[θp+1,t]∩Ip+1

|v(s)− Vp(s)|ds. (3.36)

By (3.9) and (3.11)

|v(s)− Vp(s)| = |Vr1(s)− Vp1(s)| ≤ 2α+ |ur1(s)|+ |up1(s)|,

and therefore (3.36) implies that

|y(t)− zp(t)| ≤
∫
Ip+1

(2α+ |ur1(s)|+ |up1(s)|)ds. (3.37)

To estimate the integral in (3.37), we need to estimate the integrals∫
Ip+1

2αds,

∫
Ip+1

|ur1(s)|ds, and

∫
Ip+1

|up1(s)|ds. (3.38)
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The first integral can be estimated using the definition of θ′k and Property 3.2 as follows∫
Ip+1

2αds ≤
m∑

i=p+1

∫ θ′i

θi

2αds = 2α
m∑

i=p+1

(θ′i − θi) = 2α
m∑

i=p+1

2ai
α
≤ 8ap+1. (3.39)

Next, we estimate the second integral in (3.38). Using the Cauchy-Schwartz inequality we have∫
Ip+1

|ur1(s)|ds ≤
(∫

Ip+1

ds

)1/2(∫
Ip+1

|ur1(s)|2ds
)1/2

. (3.40)

Since θp ≤ t ≤ θ′p ≤ T , we have∫
Ip+1

|ur1(s)|2ds ≤
m∑
i=1

∫ t

0

|ui(s)|2ds ≤ σ2e2kt ≤ σ2e2kT

and similar to (3.39) for the first integral in the right hand side of (3.40) we get∫
Ip+1

ds ≤
m∑

i=p+1

∫ θ′i

θi

ds ≤ 4ap+1

α
.

Then it follows from (3.40) that ∫
Ip+1

|ur1(s)|ds ≤ 2σekT
√
ap+1

α
. (3.41)

Similarly, for the third integral in (3.38), we have∫
Ip+1

|up1(s)|ds ≤ 2σekT
√
ap+1

α
. (3.42)

Combining (3.39), (3.41), and (3.42) we obtain from (3.37) that

|y(t)− zp(t)| ≤ 8ap+1 + 4σekT
√
ap+1

α
≤ 6σekT

√
ap+1

α

using the inequality

16ap+1 < 2σekT
√
ap+1

α

which follows from the inequalities ap+1 ≤ a1 <
σ2

8α
(see (3.4)).

Thus,

|y(t)− zp(t)| ≤ 6σekT
√
ap+1

α
. (3.43)

The proof of the lemma is complete. �

3.9. Distance between evader and pursuer. Using (3.29) and (3.43) we obtain

|y(t)− xp(t)| ≥ |xp(t)− zp(t)| − |zp(t)− y(t)| ≥
αa2

p

6σ2e2kT
− 6σekT

√
ap+1

α
=

αa2
p

12σ2e2kT

for t ∈ [θp, θ
′
p] since by (3.5)

ap+1 =
α3

4 · 64σ6e6kT
a4
p.

Also, it follows from the definition of β and the inequality ap < 1 that

ap+1 ≤
α

16σ2e2kT
a4
p ≤

α

12σ2e2kT
a2
p.
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Therefore, (3.44) implies that |y(t)− xp(t)| > ap+1, θp ≤ t ≤ θ′p. Also, by (3.30)

y2(t)− xp2(t) ≥ ap, t ≥ θ′p.

Thus, starting from the time θ′p we can ignore the pursuer xp since xp(t) 6= y(t) for all t ≥ θ′p for this
pursuer. We now can conclude that

(1) if y0
2 ≥ x0

i2 for the pursuer xi, then by item (ii) of Lemma 3.5 y2(t) > xi2(t) for all t > 0 and
hence xi(t) 6= y(t) for all t > 0. This means the evader ensures evasion from such a pursuer.

(2) if x0
i2 > y0

2 for all i ∈ {1, 2, ...,m}, then the ai-approach of the pursuer xi may occur at some
θi. Then, as proved, we have

|y(t)− xp(t)| ≥ ap, for 0 ≤ t ≤ θp, (by definition of θp) (3.44)

|y(t)− xp(t)| ≥
αa2

p

12σ2e2kT
> ap+1, for θp ≤ t ≤ θ′p, (by (3.44)) (3.45)

y2(t)− xp2(t) ≥ ap, for t ≥ θ′p, (by (3.30)) (3.46)

Based on these relations, we summarize as follows:
If an ap-approach time θp of pursuer xp to the evader y occurs, then xp(t) 6= y(t), for all t ≥ 0 (see

(3.44)- (3.46)). Moreover, for any i ≥ p + 1, there is no ai-approach time θi of the pursuer xp to the
evader y. This means that even all the pursuers are in the upper half-plane, and the evader ensures
evasion by applying its own maneuver.

The proof of Theorem 3.1 is completed.

4. Conclusion

We have analyzed a differential game of evasion from many pursuers. The control functions
of the players are subject to exponential integral constraints. We have constructed a strategy
for the evader and demonstrated that evasion is possible. The evader uses the control v(t) =(

0, α +
(∑m

i=1 |ui(t)|2
)1/2

)
on the set [0, T ] \ I1 and applies a maneuver on the set I1. The mea-

sure of the set I1 can be made by choosing the parameters a1 and α as small as we wish. We have
also shown that all the approach times θi for each pursuer can occur only before a specific time
T0, and the approach times θ′i satisfy θ′i ≤ T . The total number of approach times θi associated
with all pursuers does not exceed the total number of pursuers, m. The evader uses the control

v(t) =

(
0,
(∑m

i=1 |ui(t)|2
)1/2

)
for t ≥ T , and the approach time no longer occurs.
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