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Abstract. We analyze an evasion differential game involving one evader and multiple pursuers in
R™. The control functions of the players are subject to exponential integral constraints to ensure
bounded energy consumption. Evasion is considered possible if, for any time ¢, the position of the
evader differs from the positions of all the pursuers. In this work, we establish a sufficient condition
for the possibility of evasion. We construct an admissible evasion strategy and demonstrate that, for
any number of pursuers m, evasion is possible. Additionally, we show that the number of maneuvers
required for evasion does not exceed m.
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1. INTRODUCTION

Pursuit-evasion games have been a significant topic in differential game theory, with various ap-
proaches and results developed over the years. An enormous amount of work has been devoted to
studying problems (for example, Azamov [I], Azamov et al. [2 B, [4, [5] Pontryagin [21], Petrosyan
[19).

Several studies considered pursuit-evasion differential games with many players such as Chen et
al. [6], Garcia et al. [7], Ibragimov and Salimi [9], Ibragimov [11], Ibragimov and Tursunaliev [13],
Kumkov et al. [16], Kuchkarov et al. [I4], Petrov [20], Ruziboev et al. [22] 23], Salimi and Ferrara
[31], and Von Moll et al. [34].

Further extensions of the pursuit-evasion problem have been considered in various works. Ibragimov
et al. [8] studied an evasion differential game that involves one evader and many pursuers. The
dynamics of the players are described by linear differential equations, with integral constraints applied
to the control functions of the players. They demonstrated that evasion is possible for any positive
integer m by showing that the total energy of the pursuers does not exceed the energy of the evader.
Ibragimov et al. [I2], Pansera et al. [I8], Sharifi et al. [30] and Mamadaliev et al. [I7] contributed to
previous results in pursuit-evasion games and extended the analysis by considering integral constraints
on the motion capabilities of the players.

Many studies have considered different variations of the above problem. Kuchkarov et al. [I5]
analyzed a differential game of the approach of many pursuers and one evader described by linear
systems of the same type. They obtained estimates for the payoff function of the game that players
can ensure and provide an explicit description of strategies. Ibragimov et al. [10] explored admissible
and adaptive strategies in multi-agent interactions.

Samatov and Soyibboev [25] studies a pursuit differential game in which players move under inertial
dynamics controlled by acceleration vectors. Using the parallel approach strategy, optimal interception
is ensured against any evader action. The capture set is shown to be a linear combination of two
Apollonius sets defined by the players’ initial positions and velocities.

In addition, comparisons with existing work help illustrate the novelty of the approach and its
potential applications in real-world scenarios. Rilwan et al. [24], Satimov [28 29], Samatov and
Uralova [26, 27], Scott and Leonard [33], Shchelchkov [32], Zhao et al. [35], Zhang et al. [36], and
Zhou et al. [37] provided further insight into related topics.

In many practical scenarios, the accumulated heat in a system depends on the control effort applied
over time, but past inputs contribute less to the current thermal state due to heat dissipation. To
model this behavior, we impose an exponentially weighted integral constraint on the control input

t

/e‘k(t_s)|u(s)|2ds <P V>0, (1.1)

0
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where u(s) is the control input (e.g., power in a heating system), k > 0 is the thermal dissipation rate,
which governs how fast past control inputs lose their impact due to heat dissipation, p? is a bound on
the effective thermal load, the exponential weight e=*(*=%) ensures that older control inputs contribute
less to the current heat state. If we multiply the inequality by et and denote e**/2u(s) by u(s),
then the inequality takes the form

¢
/|ﬂ(s)|2ds < pPeft vt >0.
0

Clearly, the control u(s) is uniquely defined by the control @(s). In the present paper, we consider
thermal type (exponential) constraints on the control functions of players.

We show that evasion is possible from any initial position of the players. In addition, we construct
an explicit strategy for the evader and then prove the admissibility of the strategy. To the best of
our knowledge, no prior research has addressed the specific simple motion evasion differential game
with exponential integral constraints. The main difficulties in solving the problem are constructing
an evasion strategy and proving that the constructed strategy guarantees evasion.

In this work, the construction of strategy requires the identification of approach times ;. Further-
more, our approach requires #; to be bounded, as well as new techniques to estimate the distance
between a pursuer x,(t) and the evader. Note that according to the strategy constructed, the evader
moves with a positive speed in a vicinity of the y-axis, for any control functions of the pursuers on the
time interval [0,T]. The fact that each maneuvering interval of the evader is contained within [0, 7]
plays a crucial role in establishing key estimates required for the proof of the main result.

2. STATEMENT OF PROBLEM

We consider a simple motion evasion differential game of one evader y and m pursuers x;, ¢ = 1, ..., m,
in R", n > 2. Game is described by the following equations:

i =u;, z;(0)=2% i=1,...,m,
0 (2.1)
y=v, y0) =1y,
where z;, 20, y, 4%, u;,v € R*, n > 2, 20 #4y° i =1,...,m and uy, ..., u,, are the control parameters of

pursuers and v is that of evader.
Definition 2.1. A measurable function u,(t), ¢t > 0, is called an admissible control of the pursuer z;
if .
/ lui(s)Pds < p2e, i=1,....m, (2.2)
0
where p1, pa, ..., pm and k are given positive numbers.

Definition 2.2. A measurable function v(t), ¢t > 0, is called an admissible control of the evader y if

t
/ lv(s)|?ds < o2, (2.3)
0
where o is a given positive number.
Definition 2.3. A function V : [0,00) x RZm+Un 5 Rn,
(L Yy Tty ey Ty Uty eeey Up) > V(Y T1y ey Ty Uy ey Uy,
is called a strategy of evader if the following initial value problem

i =, x(0) =20, i=1,2,...,m,
) 0 (2.4)
Y=Vt y,T1, ., Ty U, ooy Upn),  y(0) =1y,
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has a unique solution (z1(%),...,zm(t),y(t)), t > 0, for any admissible controls of the pursuers u; =
u;(t), 1 =1,...,m, and along this solution the following inequality

/Ot [V (s,9(8),21(8), - . Tm(8),u1(8), ..., um(s))|?ds < o2,

holds.

Definition 2.4. If there exists a strategy V of the evader such that for any admissible controls of
pursuers z;(t) # y(t) for all t > 0, and ¢ = 1,...,m, then we say that evasion is possible.

Problem 1. Construct a strategy V for the evader y and find a condition for the parameters p;,
it =1,...,m, o, which guarantees the evasion in game ([2.1))-(2.3]).

Note that the evader knows the values y(t), z(t),...,zm(t), ui(t),..., u,(t) at the current time t.
During the game, the pursuers apply arbitrary controls u;(t), ..., u,,(t), ¢ > 0, and attempt to realize
the equation x;(t) = y(t) at least for one ¢ € {1,2,...,m}, whereas the evader strives to ensure the
inequalities z;(t) # y(t) for all i = 1,...,m and ¢t > 0.

3. THE MAIN RESULT

We consider the evasion problem in the case where n = 2 and prove a theorem on evasion. The
following presents the main result of this paper.

Theorem 3.1. If
pit et <07 (3.1)

then evasion is possible in game (2.1))-(2.3]).

Without loss of generality, we assume that y° = (0,0), that is, the evader is at the origin at the
initial time. Then, we construct a strategy for the evader which guarantees evasion. There is no
restriction in assuming that J = {1,2,...,m} meaning that only the first m pursuers 29,29, ..., 2%

are in the upper half plane. Let J = {i | 2%, > 0, 1 < i < m}. In Fig. this set of indices is
J=1{1,2,3,4,5}.
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Ficure 3. Example of initial states of players.

The solutions of the initial value problem ({2.1)) are given by

xi(t) = 2 + /O/ui(s)ds, i=1,...,m, y(t)=1° —{—/0 v(s)ds. (3.2)

We prove the theorem in several subsections.
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3.1. Notations. Let a be any number satisfying the condition

0<ac< (0= p)’ , op=(pt+ .+ p2)VA (3.3)
2(maxi<j<m Y8 — 2| + 1) "
We choose a number a; from the condition
0<ay <min{;,(0;0f))2,g;,lgi<nm|yo—x? } (3.4)
Let ) ) X
To:alfgngﬁ’yg_%?ﬂ? T:T0+%7 BZZI-G‘S;W' (3.5)

We observe § < % since a < g, k > 0.
Let a sequence {ay}?2, be defined by the formula ay; = 8- a}, k= 1,2,... It is not difficult to
prove that this sequence has the following:

Property 3.2. Z;o:p+1 ar, < 2a,.; for any p > 1.

Proof. Since 8 < %, a; < %, we have a,y1 < af, k=1,2,..., and hence, ay < 1, k = 1,2, ... Then

(oo}
Apt1
Z Ak = Qpi1 + Qprz + oo < Apy1 + Gy + 05 + o < Gpy1+ a5, a0+ .= 1_p7+ < 20,41
k=p+1 Ap+1
The proof of the property is complete. O

3.2. Definitions of approach times. Let 6, = 0 and 6; > 0 be the first time at which

(@) |zi(61) —y(01)] = an,
(i)  zi2(61) > y2(01),

for some 7 € J. Note that such a time #; may not exist. If there are several pursuers x; that satisfy
conditions (i) and (i7), (for example, 6, is an a;-approach time for both pursuers x; and x5, but 6,
cannot be an a;-approach time for both pursuers z3 and x4 because it does not satisfy condition (i7)
(see Fig. ), then we can assume, by relabeling if necessary, that one of such pursuers z; is ;. We
call 6, the a;-approach time. The times 6; are unspecied and depend on the evaders strategy and the
controls of the pursuers. It is important to note the fact that all the numbers 6; will be in the interval
[0, T'], which will be established in Subsection

FIGURE 4. ai-approach time.
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If0,,05,...,0,_1, 0, <6y < ...<8,_y, are a;—,a3—, ..., a,_1— approach times, respectively, then we
define 6, > 6,_, to be the ai-approach time if the following conditions are satisfied

(@) |zi(0) — y(0k)| = ay,

(11)  @32(6k) > yo2(Or),

for some i € J. If there are more than one such pursuers x;, then we assume without loss of generality
that one of them is x;. In this way, we define ag-approach times, 6;, k € J, = {1,2,...,mo}, i.e.,
01,05, ...,0,,,, where myg is a positive integer. Note that ai-approach times 65 will not necessarily be
defined for all pursuers z;,7 € J. We will establish that at most one approach time will be defined for

each pursuer x;,7 € J, and therefore mg < m.

Let 5
0, =0, + % k=1,2,...,mp.

Note that we have defined 6, and ), only for £ = 1,2, ..., m,.

3.3. A function assigning a maneuver for the evader. Denote I} = U2 [0;,0}), I;,41 = 0. We

define a function r : [0,7] — {0,1,...,me}, which plays a key role in assigning a maneuver for the
evader. Set

0, tel0,T]\1I,
N 3.6
r(t) {k t€ 00,00\ L, k=1,...,mo. (36)

The function r(t) has the following property.
Property 3.3. Let mg > 1. Then, for k =1,2,...,(mo — 1),

(i) If 0, < Gy, then r(t) = k for 6, <t < 6.,

(#0) If 041 < 0, then r(t) =k for 0, <t < Oyy.

Proof. Assume that 0, < 6,,1. Then [0;,0}) \ Ir41 = [0k, 0},) since 0, < 041 < O < ... and
[0k, 0;) N I y1 = 0. Therefore, r(t) = k for t € [0, 0;,). This proves item (7).

To prove item (ii), suppose that 0y < 0). Since 6, < Opr1 < -+ < 0,,,, we have [0y,0r.1) C
[0,0;) \ Ixr1. Therefore, r(t) =k for ¢t € [0, 0x.1) by the definition of r(t) (3.6]). O

Example 3.4. If
0="00 <6 <0y <0, <0 <03<0,<6; <6, <6 <6,

then r(t) has the graph shown in Fig.

3.4. Construction and admissibility of strategy for the evader. We now construct a strategy
for the evader. Let u;(t), i = 1,...,m, be arbitrary controls of pursuers. Set

m 1/2
o(t) = V()= (0’a+ (Z |uz(t)2> ) , te[0,TI\ L, (3.7)
o(t) = Vi(t) = (Vau(t),U(t)), te[0,T] NI, (3.8)
where r = r(t), Vi(t) = (Via(t),U(t)), 0 <t <0}, k=1,...,my, is defined as follows

o+ |ug (t)], Y1(0r) > 251 (01),
—(a+ |ura(t)]), y1(0k) < Tr2(On),

m 1/2
Ut) = a+<zu§2(t)> .

Via(t) = {



118 Ibragimov G.1., Tursunaliev T.G.

r
L5 3 St A
‘
‘ ‘
4@ >0
‘ ‘
‘ ‘
; |
e s
! 1
2¢-----  —
! ‘
I H | I 1 ! ! 1 l
& o S . . ¢ S o
o o, 0, 0, 6 0; 0. 6 0, 05 6 T t

FIGURE 5. The graph of function r(t).

Note that U(t) doesn’t depend on k. Finally, let

m 1/2
v(t) = (0, (Z]ui(t)\2> ) , t>T. (3.10)

Equation (3.8]) shows that the function r = r(t) assigns the control V,.(t) for v(t).
We now show that the strategy defined by equations (3.7)-(3.10)) is admissible. Indeed, let we denote

(0,0), te0,T)\1, 0, (S0 [wP)?), e 0TI\,
o(t) = (a,a), tel C o) =S (lun (O], (S ub0)?) te b,
0,0), t>T 0, (S0 fw®))*), >
Note that . .
[ lee)Pds < 2027 o < 3o (311)

Clearly, for v(t) defined by (3.7)-(3.10) we have v3(t) + v3(t) = |¢(t) + 1(t)[>. Therefore, using the
Minkowskii inequality and (3.11)) we obtain, for ¢ > 0,

([ wpas)” = ([ 1o+ vwpas)” < ([ tewras)” + ([ o)

m

1/2
< (22°T)'? + </ Z lui(s)] ds) < aV2T + (Z er%t) = aV2T + pe* < ge,

since by definition of T, T and «

2
aV2T = \/2 <T0—|—a1> :\/2a< max \yQ—xﬁ—FQal)

.....
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Here, in the last inequality we used (3.3). Thus, the evasion strategy (3.7)-(3.10]) is admissible.
Next, we prove the following statement.
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3.5. One characteristics of the strategy.

Lemma 3.5. If the evader uses strategy —, then

(a) For allk € Jo ={1,....,mo}, we have (i) 0, < Ty and (i7) 0, < T.

(b) If y9 > 2% for some i € {1,...,m}, then ys(t) > wi(t) for all t > 0.

Proof. We first show that y»(Ty) > z;2(Tp) for all i = 1,...,m. Indeed, by (3.7)-(3.9) we have

m 1/2
va(t) > a + (Z u?Q(t)> >+ |up(t)], 0<t<T, (3.12)
and therefore, -
i(yz(t) — zi2(t)) = (va(t) — wia(t)) = (v2(t) — iz (t)]) = > 0. (3.13)

dt
Hence, y2(t) — xi2(t), 0 <t < T, increases strictly. Since Ty < T', by (3.13)) we have

To
Y2(To) — 2ia(To) =y — 73y +/ (v2(8) = win(8))ds > yp — a3y + Ty = yp — a3 + ax ly2 — 25| = 0.
0 SJIsSm

Thus, y2(To) > zi2(Tp) for alli =1,...,m.
Next, since vy(t) > a + |up(t)| for Ty < t < T (see Fig.4a), and vy(t) > |upa(t)| for ¢t > T (see
Fig.4b), therefore for ¢t > T, we have

t

Yo(t) —wia(t) = y2(To) — zia(To) + / (v2(s) — wuin(s))ds

To

> (@) -wa@) b [ (o uas)] - uas)ds (3.14)
[To,t]N[To,T]
> yo(Ty) — xia(T) > 0.
Thus, ya(t) > zsp2(t) for allt > Ty and i =1,...,m.

[¢]

(a) ©

To t T
(b) o o o
T T t

FIGURE 6. The location of ¢ relative to 7.

In particular, we obtain that there is no ai-approach time 6, in the time interval [Ty, c0), since by
definition of an ai-approach time 6y, one has to have y5(0;) < xx2(6;). This is impossible for 6, > T
since as proved above y,(t) > xo(t) for all ¢ > Ty. Hence, 6, < Tj for all k =1, .., my.

Next, by definition of 6; we have

2 2
0, =0, + 2 <1 2B =, (3.15)
« (6%

and the proof of item (a) of Lemma [3.5| follows. In particular, (3.15)) implies that I; C [0,7].
Remark 3.6. Due to the inclusion I; C [0,7] the set [0,7] N I; in (3.8) is equal to I;.

To show item (b), using y9 > z% we observe that for ¢t > 0

t
) —walt) = -t [ () —uae)dsz [ (@t fuals)] - uas)ds > 0.
’ [0,£]1[0,T]
The intersection [0,¢] N [0,7] in (3.16)) is equal to either [0,t] (see Fig.5a) or [0,T] (see Fig.5b).
Thus, we have yo(t) > z;2(t) for all t > 0 by (3.16). This completes the proof of Lemma O
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FIGURE 7. The location of ¢ relative to 7.

3.6. Fictitious evader z,. Take any integer p € {1,...,mo} and assume that 6, is the a,-approach
time of the pursuer x, to the evader y. We will estimate the distance between z,(t) and y(¢) on
[0,,0,]. To this end, we introduce a fictitious evader (FE) z, whose motion is described by the
following equation

Zp =Wy, 2p(0,) = y(6,),
where w, is the control parameter of z,. The fictitious evader z,(¢) is defined only on the interval
[0,,,0,] and

wy(t) = Vo(t) = (Viu(8), U (1)), 0, <t <0, (3.16)
The trajectory of FE

Since by (3.16) vo(t) = U(t), therefore

aa(l) = 2a(6)) +/; U(s)ds = y(6,) +/; va(8)ds = yalt), 6, <t <8,

P

We now demonstrate that

0,
/ IV, ()[2ds < 02T (3.17)
Op

By denoting

we have

" 1/2\ 2
Va1 = Vi) + (1) = (a+ ua (5)])* + (a + (Zﬁz(ﬂ) ) = o) + (O, 0, <t <0,

Therefore, using the Minkowskii inequality we obtain

(/:; IVp(s)|2d5> 1/2 B </99; 01(5) + ¢1(s)|2d8> " < </:; \901(5)|2d3> " + </:; \¢1(s)|2ds> "

p P p p

' m 1/2
< (2042(9;—917))1/2—1—(/epzmi(sﬂzds) : (3.18)

P =1
since by (2.2) and (3.15)) we have f(i; lu;(s)[2ds < p2e?*% < p2e?*T | and then it follows from (3.18))
that

o 1/2 m 1/2
(/ |V}a(s)|2d5> < 2,/aa, + (Z p?eQ’“T> =2yaa, + () " = 2y/aa, + petT < ek,
i=1

Op

since by (3.4) a, < a; < %, and hence (3.17)) is true.
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3.7. Distance between fictitious evader and pursuer.
Lemma 3.7. Let the pursuer x, apply an arbitrary admissible control u,(t) on 0, <t <0,. Then

aa?

P
6o2e2kT ’

Proof. Let 0, <t < 0, and for definiteness assume that z,,(0,) < y:(6,). Then by (3.9) we have
Vpr(t) = a + |up (t)|. Therefore,

|2p(t) — x,(t)| > 0, <t <0, and y(t) —zp(t) >a, t>0, (3.19)

|Zp(t) - xp(t)| > Zpl(t) - JUpl(t) =Y (911) — Tp1 (917) + /et (Vpl (5) — Up1 (5))d5

p

> [ (@t fun(8)] — un(5))ds = a(t =), (3.20)

On the other hand,
t
‘Zp(t) - xp(t)’ > |Zp(0p) - xp(ep)‘ - /0 H/;)(S) - up(3)|d3‘ (3‘21)

The integral in (3.21)) can be estimated by using the Cauchy-Schwartz inequality as follows

t t ¢ 1/2 ' 1/2
| Wis) = up(olds < < | vas [ Ws)—up(s)ms) < <<t—ep> / 2<m<s>|2+|up<s>|2>ds> .

01’
(3.22)
Since t — 0, < ¢, — 0, <T by (3.15)), we have
t t
/0 H/vp(S)PdS S 0'262kT, /0 ‘Up(8)|2d8 S p§€2kT S 0'262kT,
then it follows from (3.22)) that
t
/ Vi (s) = up(s)ds < (t—0,)2 (402 7T) > = 25(t — 0,)/2eHT.
0,
By using (3.23) and the equation |2,(0,) — x,(6,)| = a,, (3.21)) yields that
z2p(t) — x, ()| > a, — 20(t — e, .
|2p(t) = 2, ()] > @, — 20(t — 0,)' /2T (3.23)
It is easily seen from (3.20)) and (3.23)) that
|2p(t) =z, ()| = h(t) = max{ha(t), ha(D)}, t 26y, (3.24)
where

hi(t) = a(t —0,), ho(t) =a, —20(t — 0,)"/%e7.

Note that the funcion hy(t), t > 6,, is increasing, and the function hy(t), ¢ > 6,, is decreasing,
therefore, it is not difficult to see that the function h(t), t > 6,, attains its minimum at the point
t = t, where

hi(t) = ha(t), t>0,. (3.25)

Let (t —6,)'/2 = d. Then equation (3.25) takes the form

ad® = a, — 20de"”,
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or ad® + 20e*”'d — a, = 0. This equation has the following positive root

P —oefT +\/c2e?*T + aa,

. =
a

oerT + /0% T 1 qa,

Then

aa?

= (06" + /02T ¥ aa,)”
Since by (3.4) a; < 3 < €7, and in view of & < 0%, we have aa, < aa; < 0?7, therefore (3.26)
implies that

(3.26)

aa?

|2, (t) — 2, (8)| > gi@l}}h(t) > 602%’ 0, <t <0, (3.27)

Next, using the fact that y2(6,) — xp2(6,) > —|y(0,) — 2,(0,)| = —a,, and the equality z,2(6,) = y2(6,)
by (3.17) we obtain

0, 0, m 1/2
22(0)) — 2,2(6)) = 12(6,) 3,206 + [ (U(6) — wyals))ds = —a, + | <a+<§)@@0 —%A@)@
(2% P =1
9; / 2aP
Z—ap—l—a/ ds = —a, +a (0, —0,) = —a, + « 9p—|—7—0p = ay.
0,
(3.28)
Finally, let ¢t > 6. By (3.17) y2(0,) = 2,2(6;), and by (3.7), (3.8) and (3.10), va(t) > |upa(t)|. Then
using (3.10)), (3.28) we get

t
) = 22(8) = 22(60,) ~ 22(6,) + [ (02(5) — was))ds = 22(6)) ~ ,2(6}) 2 @y £ 26,
%
Thus, we have the following inequalities:

aa?

‘Z;D(t) - $P(t)’ > 60_2€§kT7 01) S t S 0;)7 (329)
Yo (t) — zpa(t) > a,, t>0,. (3.30)
This completes the proof of Lemma O

3.8. Distance between real and fictitious evader.

Lemma 3.8. The following estimate holds

ly(t) — 2,(£)] < 60T, [T 6, <1<, (3.31)

Proof. Since z,(6,) = y(0,), we have

[ @) = it

p

ly(t) — zt)| = , 0,<t<0. (3.32)

By and
o(t) = (Vi (1), U(1)),  Vp(t) = (Vu(8),U(1)), 0, <t <6, (3.33)

Consider two cases: (i) 0, < 0,41 and (ii) 0,1, < 0.
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N -0

Y(Op+1) = 2p(Opt1

y(0p) = 2(6p)

FIGURE 8. Points y(t) and z,(t) are on one horizontal line.

Case (i). Let 0, < 0,,,. Then by item (i) of Property r=r(t) =p for 6, <t < 0,. Therefore
by (3.11) we have v(t) = V,(t), 0, <t < ¢,. Hence, by (3.10)

[y(t) — 2,(1)] = 0. (3.34)

Case (ii). Assume now 0,,; < 6,. Then by item (i7) of Property we have v(t) = V,(¢),
0, <t < 0,1, therefore, y(t) = 2,(t), for t € [0,,6,.1], and so satisfied. This means that the
trajectories of y(t) and z,(t) coincide on [0,,0,.1] (see Figl). Then, starting from the time 6,,, the
evader applies the maneuver V,,(t) against the pursuer x,.

Next, we estimate |y(t) — 2,(t)| for t € [0},41,0,), we then obtain

y(t) = 2()] =

A;w@—n@wssiﬂwﬁ—%@%

< / lo(s) — Vi, (s)|ds + / [o(s) = Vi, (s)|ds. (3.35)
(Op+1,0)\Ipt1 [Opt1,t)NIpp1

Since by definition r(t) = p for t € [0,,0,) \ Ip41, and [0p41,t) \ I11 C [0,,0,) \ Iy, for t € [0,,0)),
therefore we have r = r(t) = p, and hence, v(t) = V() for t € [0,41,t) \ I,+1. Consequently, the first

integral in (3.35) is 0, and so (3.35)) takes the form
u(®) -0 < [ o(s) = Vi(s)lds: (3.36)

[Op+1,¢]NIp41
By (3:9) and (3-11)
[v(s) = Va(s)l = [Via(s) = Via ()] < 20+ Jura(s)] + |upn(s)],
and therefore (3.36)) implies that

ly(t) — 2 (1)] < / (20 + [y (8)] + |up (s) ) ds. (3.37)

Ip41

To estimate the integral in (3.37)), we need to estimate the integrals

/ Qads,/ |u,1(s)|ds, and/ [ty (s)|ds. (3.38)
Tpta Tpa Ipt1
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The first integral can be estimated using the definition of ), and Property as follows

m 9; m m 2@'
2ads < 20eds = 2 0, —0,) =2 — <8 ) 3.39
/Ip+1 ae = Z/‘;z o az(z ) Oéz a pt1 ( )

i=p+1 i=p+1 i=p+1

Next, we estimate the second integral in (3.38). Using the Cauchy-Schwartz inequality we have

/1 . |ur1(s)ds < ( /I . ds) b ( /I - |uT1(S)\2d5> " : (3.40)

Since 0, <t < 01’0 < T, we have

m
u,q(8)]2ds < w;(8)]%ds < o?e?t < g2e2kT
[uri(8)|"ds < i < <

Ip+a i=1 70

and similar to (3.39)) for the first integral in the right hand side of (3.40) we get

= o 4a
/ ds < Z / ds < —#tL
Tpta 0; @

i=p+1

Then it follows from (3.40) that

/1 [ty (5)|ds < 20eFT %. (3.41)
p+1

Similarly, for the third integral in (3.38]), we have

/I e (5)]ds < 20T [ 9251 (3.42)
p+1

Combining (3.39), (3.41), and (3.42) we obtain from ({3.37) that

a a
ly(t) — 2,(t)] < 8apyy + doe"T |2 < GoetT | 2=
o o)
using the inequality
Gp+1
o

16a,,1 < 20e*T

~—

which follows from the inequalities a,,1 < a; < % (see (3.4)
Thus,

ly(t) — 2,(t)] < 60ekT | [ 224L, (3.43)
(6

The proof of the lemma is complete. O

3.9. Distance between evader and pursuer. Using (3.29) and (3.43|) we obtain

2 2
aa, kT [Gpr1 QG
W)~ 2,0 2 lel0) 50— [2(0) — 9] > n et [ = O

for ¢ € [6,,0,] since by (3.5)
3
a 4

Up+1 = 6156 0kT Up°
Also, it follows from the definition of 5 and the inequality a, < 1 that

Apr1 < at @ a?
p+1l = 1602e2kT P = 19g22kT P
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Therefore, (3.44) implies that |y(t) — z,(t)| > apy1, 0, <t <0, Also, by (3.30)

Yao(t) — 2pa(t) > a,, t>0,.

Thus, starting from the time 6], we can ignore the pursuer x, since x,(t) # y(t) for all £ > ¢, for this
pursuer. We now can conclude that

(1) if yo > % for the pursuer x;, then by item (ii) of Lemma Yo(t) > x;o(t) for all t > 0 and
hence x;(t) # y(t) for all t > 0. This means the evader ensures evasion from such a pursuer.

(2) if 2% > ¢ for all i € {1,2,...,m}, then the a;-approach of the pursuer x; may occur at some
f;. Then, as proved, we have

ly(t) — x,(t)| > a,, for 0 <t <46,, (by definition of 6,) (3.44)
2
aa ,
9(0) — ()] > om > apen, for 6, < £ <6, (by @) (3.45)
ba(t) — 2,0(0) > ay, for ¢ > 6, (by (30)) (3.46)

Based on these relations, we summarize as follows:

If an a,-approach time 6, of pursuer z, to the evader y occurs, then z,(t) # y(t), for all t > 0 (see
— ) Moreover, for any 7 > p + 1, there is no a;-approach time 6, of the pursuer z, to the
evader y. This means that even all the pursuers are in the upper half-plane, and the evader ensures
evasion by applying its own maneuver.

The proof of Theorem [3.1]is completed.

4. CONCLUSION

We have analyzed a differential game of evasion from many pursuers. The control functions
of the players are subject to exponential integral constraints. We have constructed a strategy
for the evader and demonstrated that evasion is possible. The evader uses the control v(t) =

1/2
<0,a + (Z:il ]uz(t)|2) > on the set [0,7] \ I; and applies a maneuver on the set I;. The mea-

sure of the set I; can be made by choosing the parameters a; and «a as small as we wish. We have
also shown that all the approach times 6; for each pursuer can occur only before a specific time
Ty, and the approach times 6 satisfy 6, < T. The total number of approach times 6, associated
with all pursuers does not exceed the total number of pursuers, m. The evader uses the control

1/2
v(t) = (0, <ZZ1 \uz(t)]2> ) for t > T, and the approach time no longer occurs.
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