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Abstract. We investigate the interception problem in a differential game with non-inertial players
(a pursuer and an evader) who move in dynamic flow fields with various influences. Throughout the
paper, we solve the pursuit and “life-line” game problems. To solve the pursuit, the strategy of parallel
pursuit (Il-strategy for short) is defined and used. With the help of the II-strategy and applying the
Gronwall-Bellman inequality, sufficient pursuit condition is determined. In order to solve the “life-
line” game to the advantage of the pursuer, we build the set of meeting points of the players and prove
that this set monotonically decreases with regard to inclusion relative to time. The “life-line” game to
the advantage of the evader is solved by constructing evader’s attainability domain where it reaches
without being caught for an arbitrary control of the pursuer.
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1. INTRODUCTION

Differential games are a special kind of problems for dynamic systems particularly moving objects.
In 1965, this theory was studied systematically by R. Isaacs and published in the form of monograph
[21], in which numerous examples were examined and theoretical questions were only touched upon.
The foundation of the modern theory of the differential game was settled by mathematicians R. Isaacs
[21], L.D. Bercovitz [§], R.J. Elliot, N.J. Kalton [14], A. Friedman [15], O. Hajek [17], Y. Ho, A. Bryson,
S. Baron [18], L.S. Pontryagin [27], N.N. Krasovskii [22], L.A. Petrosyan [26], B.N. Pshenichnii [28],
A A. Chikrii [12].

In the differential games theory, in accordance with the basic approaches proposed by L.S. Pon-
tryagin [27] and N.N. Krasovskii [22], a differential game is explored as a control problem from the
viewpoint of either the chasing player (pursuer) or the escaping player (evader). Under this framework,
the game can be stated as either a pursuit or an evasion problem. Pursuit-evasion differential game
have been extensively studied in the literature [8] 12} [16] 19, 20l [32] with significant contributions
addressing theoretical foundations, optimal strategies, and real-world applications.

The book [21] by R. Isaacs covers several game problems that were explored thoroughly and proposed
for further investigation. One of these is named ”life-line” problem that was initially stated and
examined for specific cases in [21] (Problem 9.5.1). When control functions of both players meet
geometric restrictions, the stated game has been rather comprehensively considered in [26] by L.A.
Petrosyan. The II-strategy, which was introduced in [26], 28] for a simple pursuit game with geometric
restrictions, functioned as the starting point for the development of the effective method in pursuit
games with multiple pursuers (see [3|, 4, 1T}, 12], [29]-[30]).

There are numerous studies on nonlinear differential games that have found key conditions for
successful capture and the optimality of capture time. For example, in work [33], a differential game
of the stationary nonlinear system was studied, and the optimality of capture time was analyzed
for a specific case on a plane, where the pursuer applied a counter-strategy. Similarly, A. Azamov,
in [2], considered the pursuit differential game, where the dynamics were governed by a nonlinear
system of differential equations of a specific form, through a positional counter-strategy on a plane,
and also presented clear examples that illustrate the explicit characteristics of the game. In [24], a
two-player nonlinear differential game with an integral quality criterion was investigated at the time
interval divided into two segments. Necessary and sufficient conditions were obtained for the existence
of a saddle point for a general two-person zero-sum differential game when one or both players use
suboptimal control laws of specified form (referred to as piecewise control laws). Additionally, the work
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of K.A. Shchelchkov [34] was concerned with the problems of stabilization to zero under disturbance
in terms of a differential pursuit game described by a nonlinear autonomous system of differential
equations. The sufficient conditions for the existence of a neighborhood of zero from each point of
which a capture occurs in the indicated sense were derived.

Some optimal control problem formulations have taken into account the effect of an external flow
field. For example, in [23], the authors considered the problem of optimal guidance of a Dubin’s vehicle
[13] to a specified position under the influence of an external flow. The minimum-time guidance
problem for an isotropic rocket in the presence of wind has been studied in [7]. The problem of
minimizing the expected time to steer a Dubin’s vehicle to a target set in a stochastic wind field has
also been discussed in [I]. However, the same level of attention in the literature has not been devoted
to pursuit-evasion or “life-line” games with two (or more) competing agents under the influence of
external disturbances (e.g., winds or currents). In papers [35]—[36], a multi-pursuer and one-evader for
the pursuit-evasion game in an external dynamic flow field is considered. Due to the generality of the
external flow, Isaacs’s approach is not readily applicable [21]. Instead, in [36], a different approach is
used and, the optimal trajectories of the players through a reachable set method are found.

This work studies the differential game with a “life-line” when players (a pursuer and an evader)
move in dynamic flow fields with various influences. Throughout the paper, we solve the pursuit
problem and the game with a “life-line”. The obtained results are based on Krasovskii-Pontryagin’s
formalization ([22] 27]), Pshenichnii-Chikrii’s method of resolving functions ([12} 28]), the II-strategy
(B]-[6], 11l 26], [29]-[31]) and the properties of the multi-valued mapping [10].

2. STATEMENT OF PROBLEMS

Let two controllable players P and F be given in Euclidean space R™. The first player P called a
Pursuer chases the second player E called an Evader. Suppose, x signifies the position of the Pursuer,
and y signifies that of the Evader in R™. Then the players perform their motions in accordance with
the equations

P: &=u+ Fp(t,x), x(0)=x, (2.1)
E: y:v+FE(t7y)a y(O) = Yo, (22)
appropriately, where z,y,u,v € R", n > 2, t € R, := [0,+00); Fp : Ry X R — R"

(Fg : Ry x R™ — R™) is an effective flow field for the Pursuer (for the Evader); xg, yo are the players’
initial positions. It is considered that zy # yo.

In , the parameter u denotes as the Pursuer’s control, and it is hereafter selected as a measurable
function u(-) : Ry — R"™ complying with

lu(t)] < a for almost all t > 0, (2.3)

where « is a positive constant.
Likewise, in ([2.2)), the parameter v denotes as the Evader’s control, and it is henceforth chosen as
a measurable function v(-) : Ry — R" complying with

|v(t)| < B for almost all £ > 0, (2.4)

where [ is a non-negative constant.

In the Theory of Differential Games, inequalities and are generally called geometric
constraints (briefly, G-constraints) for the control functions.

Henceforward, the considered game f is referred as the nonlinear differential game -

or briefly, NDG f.

Definition 2.1. A measurable function v : Ry — R”, |u(t)] < «, t > 0, (respectively, v : R, — R™,
lu(t)] < B, t > 0) is called an admissible control of the Pursuer (respectively, Evader).

Let Ug (respectively, V) denote the set of all admissible controls of the Pursuer (respectively,
Evader).
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Assumption 2.2. (Caratheodory’s conditions) Let the functions Fp(t,x) and Fg(t,y) be defined on
the domain D := R, x R™ and let they satisfy the conditions given below: 1) Fp(t,z) and Fg(t,y) are
continuous in x and y for each fixed ¢; 2) Fp(t,x) and Fg(t,y) are measurable functions in ¢ for each
fixed x and y; 3) for each compact subset @ of D, there can be found Lebesgue-integrable functions
hp(:) : Ry — Ry and hg(:) : Ry — Ry, where sup,~,hp(t) = b}, 0 < b} < 00, sup,sq he(t) = hj,
0 < h% < oo, such that |Fp(t,z)| < hp(t) and |Fe(t,y)| < hg(t) for all (¢, z), (t,y) € Q.

In equations , , the functions Fp(t,z) and Fg(t,y) represent the exogenous dynamic flows,
but they may also represent the endogenous drift owing to the nonlinear dynamics of the players
[35]-[36]. It is reasonable to suppose that the magnitude of these flows (e.g. winds or currents) is
bounded from above by some functions hp(t) and hg(t) in the third condition of Assumption[2.2] B.T.
Samatov et al. [31] considered the intercept problem when objects move in the same type external
dynamic flow field. Unlike this work, in our study, the players are assumed to move within different
influence zones, and the pursuit problem is solved for the “life-line” game also. In other words, our
work can be regarded as a logical continuation of the study [31].

Assumption 2.3. (Lipshitz’s conditions) For each compact subsets Qp and Qg of D, there exist
Lebesgue-integrable functions kp(-) : Ry — Ry and kg(-) : Ry — R, where sup,,kp(t) = kp,
0 < kp < 00, sup,sq ke(t) = kj, 0 < kj < oo, such that

|Fp(t,z1) — Fp(t,z2)| < kp(t)|x1 — x4,

[Fe(t,y1) — Fe(t,y2)| < ke(t)|yr — vel
for all (t,21), (t,22) € Qp and (t,y1), (t,12) € Qp.
Proposition 2.4. If Assumptions and[2.3 are valid, then
[Fp(t,x) — Fe(t,y)| < p(t)|z -yl + q(t) (2.5)
is true for any x,y € R"*, where
p(t) =kp(t) + ke(t), q(t)=hpt)+he(t),

supp(t) = p = kp + ki < 00, supq(t) =q=hp + hj < occ. (2.6)
t>0 t>0

Proof. Indeed, by using inequalities in Assumptions and the left side of (2.5 can be estimated
as follows:

|Fp(t, ) = Fp(t,y)| = [Fe(t, 2) — Fp(t,y) + Fp(t,y) = Fu(t,z) + Fp(t, ) — Fp(t, y)|

< |Fp(t,z) = Fe(t,y)| + |Fp(t, y)| + |Fp(t, )| + [Fu(t, x) — Fp(t,y)|
< kp()|z—yl+hp(t) +he(t)+ke)|z -yl = (kp(t) +kp(t))|x —y[+hp(t) +he(t) = p)|z -yl +q(D),

which is the desired result.
O

In NDG (2.1)—(2.4), the objective of Pursuer P is to catch Evader E (a pursuit game) at some
moment 7T, 0 < T, < +00, i.e. to reach the equality

z(T.) = y(T.),

where z(t) and y(t) are trajectories generated during the game. The notion of ”trajectories generated
during the game” requires clarification. Evader E tries to avoid the meeting with Pursuer P (an
evasion game), i.e. to guarantee the relation z(t) # y(¢) for all ¢ > 0, and if it is impossible, to prolong
the moment of the meeting as far as possible. Naturally, this is the preliminary problems setting.
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Definition 2.5. If u(-) € Ug and v(-) € Vg, then Caratheodory’s differential equations

& =u(t)+ Fp(t,z), z(0) =z,

g=v(t)+Fe(ty), y(0) =y

give rise to the unique trajectories z(t) = z(t; zo, u(+)) and y(t) = y(¢; yo, v(+)) correspondingly. In the
given case, z(t) is called the Pursuer’s trajectory, and y(t) is called the Evader’s trajectory.

Definition 2.6. A control function u(¢,x,y,v) : Ry x R”™ x R™ x R® — R" is said to be a strategy
of Pursuer P if: 1) w(t,z,y,v) is continuous with regard to z,y,v for each fixed t; 2) u(t,z,y,v)
is Lebesgue measurable with regard to ¢ for each fixed (z,y,v) and is Borel measurable with regard
to v for each fixed (¢,z,y); 3) u(t,z(-),y(-),v(-)) € Ug for all v(-) € Vg; 4) there exists such a
Lebesgue-integrable function w(-) : R, — R, that

lu(t, 21, y,0(t) — u(t, z2,y,0(t))| < w(t)|zr — o

for any (¢,z1,y,v(t)), (t,22,y,v(t)) with ¢t > 0, z1, 22,y € R", v(-) € V.

Write
z(t) = x(t) —y(t), 2(0) = 20, 20 = o — Yo (2.7)

Definition 2.7. A strategy u(t,z,y,v) is said to be a parallel pursuit strategy or briefly, IT-strategy
if for all v(-) € Vi, the function z(t) is representable as

2(t) = A(t. (1), y(t), () 2o, (2.8)

where (z(t),y(t)) is the solution of the system of differential equations
{ a'c:u(t T, Y,V t))+Fp(t z), x(0) = o, (2.9)

and A(t,z(t),y(t),v(-)) is a scalar monotonically decreasing continuous function with respect to ¢,
t > 0, and it is generally called an approach function of the players P and F in the pursuit game.

Remark 2.8. It is necessary to state that similar to the definition of Il-strategy for the case of simple
motions of the players given in works [3], [4], [26], [28]-[31], the following properties are met: a) the
vector z(t) in (2.8) joining the positions of the players changes its position in the parallel way to
itself during the pursuit; b) depending on the property of the approach function A(t, z(t), y(t), v(-))
in Definition the distance between the players |z(t)| = |z(t) — y(¢)| strictly decreases.

Definition 2.9. We say that H—strategy guarantees that Pursuer P wins on the time interval [0, TG}
in NDG . % ) if for all v(-) € Vg: a) there exists a time moment T, € [0,Tg] at which the
vector function z(t Wthh is defined by the solutions z(t) and y(t) of system (2.9)), meets z(7%) = 0;
b) w(t, z(-),y(") ) € Ug on [0,T.]. In the given case, the number Tg is called a guaranteed time
of the pursuit.

3. THE OBTAINED RESULTS

The given section is devoted to give solutions of the pursuit and “life-line” game problems for NDG
—. First of all, in the pursuit game, a Il-strategy is set up for Pursuer P, and a sufficient
pursuit condition is demonstrated. By this strategy, an explicit formula for a set of all the meeting
points of the players is generated. Then in the “life-line” game, a reachability domain of Evader F is
constructed.
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3.1. The pursuit game solution. Write the following functions:

w=w(t,x,y,v) :=v+ Fr(t,y) — Fp(t,x), (3.1)
r(w) = (w, 2o) + \/<w, Z0)2 + a? — |wl|?, (3.2)
where 2y = 22, and (w, Z5) means the scalar product of the vectors w and Z, in R".

[z0]”

Definition 3.1. For o > |w/|, the control function
u(w) :==w —r(w)zp (3.3)
is called the IT-strategy of Pursuer P in the pursuit game.

It should be mentioned that the function r(w) is mainly called a resolving function [12].

Lemma 3.2. If a > |w|, then the function r(w) is continuous and non-negative in w, w € R, and it
is bounded as
a—|w| <rw) <a+ |wl. (3.4)

Proof. As a > |w|, the function r(w) is monotonically increasing with regard to (w, Zo) (see (3.2)).
Thus, applying —|w| < (w, Z9) < |w| to r(w) yields (3.4)), which ends the proof. O

Lemma 3.3. If a > |w|, then the function w(w) is continuous in w, w € R"™, and it satisfies
lu(w)| = a.
Proof. Squaring both sides of gives
w(W)* = w]” + r(w) [r(w) — 2(w, 2)],
and replacing into the last expression leads to |u(w)|* = a2, which is our claim. O
Lemma 3.4. If a > |w|, then there is a Lebesgue-integrable function g(-) : Ry — R, that satisfies
|[w(wi) — w(ws)| < g(t)]a1 — o
for any wy,ws € R™, where
w1 = w(t,z1,y,v) :=v+ Fg(t,y) — Fp(t,z1), ws=w(t,x2,y,v) :=v+ Fr(t,y) — Fp(t,x2).

Proof. Write ¢ = (w, ), b = o — |w|? and introduce a function ¢ (c) = ¢ + v/c + b from (3.2)). Since

d‘s(cc) =1+ \/c;ﬁ’ we can assert that the function t(c) is continuous on [cy, ¢,| and is differentiable at

each point of the interval (cl, cg). Thus, on the basis of the Lagrange theorem, there is such a point
ct e (cl,cg) that
Y(ca) —Y(car) = T/’(C*) (C2 - 01) = ¢(C*) (<W27 Zo) — {wi, 50>)
= 1/J(C*)<6L)2 — wi, 5’0> < w(c*)}wl — wg‘. (3.5)

Now, with the help of (3.1)), (3.3, (3.5) and by Assumptions the function u(w) can be estimated
for any wy,wy € R™ as follows:

lu(wi) — u(ws)| = [v+ Fr(t,y) — Fp(t,z1) — v — Fp(t,y) + Fp(t,zs) — r(wi) 20 + r(w2) 20|

IA
&l

p(t, xl) —Fp t,a:g)| + |r(w1) — r(w2)| = |Fp(t,:1;1) — Fp(t,azg)} + WJ(Cl) — ¢(02)|
1) = Fp(t,z)| + 0(c) |wr — wa| = (¥(c*) + 1) |Fp(t,21) — Fp(t, 22)| < g(t)|21 — 22,
where g(t) = (¢(¢*) + 1)kp(t). This completes the proof. O
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Lemma 3.5. (The Gronwall-Bellman inequality [25, pp. 13, Theorem 1.3.2]) Let n(t) be a real valued
continuous function, and let ¢(t) be a non-negative integrable function in respect to t, t > 0. If the

integral inequality
o /¢ 3)\ds

|2(t)] < n(t) + /¢(8)n(8) exp (/ ¢(T)d7) ds
holds. S

Theorem 3.6. Let o > + q + plzo|. Then II-strategy guarantees that Pursuer P wins on the
time interval [O,TG] i the pursuit game, where

1y, a=B- ~
T — lnaﬁq FEE if p>0,
<= if p=0
a—B—q’ '

is valid, then

Proof. Suppose, Evader E makes use of an arbitrary control function v(-) € Vg and Pursuer P
realizes Il-strategy (3.3]). Then by means of (2.9)), (3.1)), (3.3]), we derive the system of Caratheodory’s
differential equations

{i:um+4%@w@»—rwuﬁv»wmvw»%7dmzxm (3.6)
§ = o(t) + Fe(t,y(1)), y(0) = o, ‘

where the equations in (3.6) pose the unique trajectories (t) := z(¢; zo, u(-)) and y(t) := y(t; yo, v(-))
of the players P and F, respectively. On the basis of (2.7)), it proceeds from ({3.6|) that

z=—r(w(t,z(t),y(t),v(t)))2, 2(0) = z. (3.7)
Integrating equation , we attain the solution
2(t) = A(t, z(t), y(t), v()) 20, (3.8)
where
At 2(t), y(),v() = 1 — ’1/ y(s), v(s)))ds. (3.9)

By reason of (2.3)), (2.4)), (3.1)), (3.4) and by Proposition the function (3.9) is maximized as follows:

At (1), (), 0()) =1 — [ r(w(sz(s), y(s),v(s)))ds <1 — — [ (@ Jw(s)])ds

EY Y
0 0

=1- 1 (at - / |v(s) + Fg(s,y(s)) — Fp(s,x(s))|ds)

|0l

§1—’1<a— t—/]Fpsaz FE(sy )|ds)
Zo|

s1—](m—ﬁﬁ—/ﬂmMﬂ@—y@n+«@M%

Zo’
0
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1 t
<1 (<a —B—q)t— /p|z<s>|ds) ,

0

or to sum up,
Alty (), y(0), o) <1 - =9 / yle(e)lds. (3.10)
20
Combining (3.8) and (3.10)) we obtain

201 <Jaol ~ (@~ 8= )t + [ pla(s)lds. (3.11)

0

In the right side of (3.11)), taking as n(t) = |z0| — (o — 8 — q)t, ¢(t) = p and applying Lemma to
(3.11)) give rise to

()] < K(2), (3.12)
where KC(t) = |z0| — (. — B — ¢ — plzo]) (e = 1) /pif p > 0, K(t) = |20| — (a = B — q)t if p = 0. Since
a > B+ q + p|zo|, substituting the value of Tg (see the theorem) into K(t) ylelds K (T ) = 0. For
this reason and because of (3.12] - there is a time value T, € [0, Tg] satisfying z(7.) = 0, which is the

desired conclusion.

Now let’s confirm the admissibility of Il-strategy for all t € [0,T.]. To this end, we have to
show a > |w(t)| on the interval [0, T,] as specified by Definition By means of Proposition [2.4] and
by , we obtain the following estimations from the condition of the theorem:

a > f+q+plzol = [v()] + q(t) + p(t)]=(1)]

> o(t)| 4+ |Fe(t,y(t)) — Fp(t,z(t))]| > |v(t) + Fe(t,y(t)) — Fp(t,z(t))| = |w(t)]-
This ends the proof of the theorem. |

Remark 3.7. If the players P and E move in the same compact subset of R", then in (2.5)), it is
supposed that p(t) = min{kp(t), kg(t)} and q(t) = hp(t) + he(t), where kp(t), kg(t), hp(t), hg(t) are
given functions in Assumptions 2.2 and

3.2. The set of meeting points of the players. In the theory of differential games, after solving
the pursuit game problem, it is highly significant that the set of all points, which the players P and
FE meet, is explicitly constructed.

Let D(z,y) designate a domain consisting of such all points d that Pursuer P starting its motion
from the position x is able to first get through to the point d before Evader E starting its motion from
the position y, i.e.:

D(w,y) = {d| Bld— 2| = ald - yl}. (3.13)

For a # 3, the boundary of the domain in (3.13)) is represented as
0D(z,y) = {d| Bld — z| = ald — y|},

which is usually said as the sphere of Apollonius.
If Theorem is satisfied, then, with the help of II-strategy , Pursuer P can catch Evader F
on some point in R”. For NDG 7, we are going to define a meeting domain of the players.
As known, the pair (yo,v(-)), v(-) € Vg, produces the Evader’s motion trajectory y(t)
y(t;y0,v(+)), and the pair (zo,u(:)), u(-) € Ug, creates the Pursuer’s motion trajectory z(t) :=
z(t; o, u(+)) for every t € [0,1,], 0 < T, < Tg, where T, is the players’ meeting time, viz,
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z(T,) = y(T.) holds at this time. Accordingly, for (z(t),y(t)) at each ¢ € [0,7.], it makes sense
to write the multi-valued mapping

D(x(t),y(t)) = {d | Bld — z(t)] > ald —y(t)|} (3.14)
on the interval [0, T, *] Mention that
D(xo,y0) = {d | Bld — x| > ao|d — yol}-

It is apparent that y(t) € D(x(t),y(t)) is accurate on account of |z(¢)| > 0 on the interval [0, 7,].

Proposition 3.8. It is true to write the multi-valued mapping as
D(x(t),y(t)) = x(t) + A(t, (), y(t), v(-)) [D(z0, o) — o], (3.15)
where A(t,z(t),y(t),v(-)) is the approach function of the players in , and

04»3|20’
2 _ g2’

D(z0, Yo) = 2o — C(20) + R(20)B, C(z) = (M) 20, R(z) = (3.16)

B:{bER"Hb\Sl}.
Set

- ( a6ﬂ2/’FP s,2(s)) — Fr(s,y(s ‘ds) /Fp s, x( (3.17)

Then, write the multi-valued mapping
D (1, (), y(1)) = D(a(t). y(1) + H(t, 2(t), y(1)) (3.18)
Theorem 3.9. D*(t2, 2(t2), y(t2)) C D*(t1, (t1),y(t1)) for t1 <t from any ty, to € [0,T.].

Proof. First off, let us introduce the following notation for convenience in calculations:

§(t) = &(t, z(t),y(t) = Fp(t,2(t) — Fr(t, y(t)). (3.19)
Inequality (2.4) can be immediately transformed into the form
2 B 2 2
‘U(t)‘ < o2 — ﬂ2 (Oé - ‘U(t)‘ ) (320)
Then considering (3.1)) and (3.19)), inequality (3.20) may be rewritten as
2 B 2 2
w(t) +£@)] < o 2 (@ —|w(®) +E®))%)

or from here it is derived that

2
< B (
= a2 — B2

In accordance with (3.2), it can be readily verified that the following equality holds:

o’ — w®)]* = r(w(t)) (rw(t) — 2(w(t), %)) (3.22)

w(®)]* + 2(w(t), £(1)) + [§()[* o — lw(t)]* = 2{w(t), £(t) — [E®)%) - (3.21)
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Replacing the right-side term of (3.22)) into (3.21)) leads to the inequality

O + 2 {wlt), 2 rwl)ze) + e

Ck2—52

< e -2 (u). 55 ew).

N

wOF +2 (w0, SO+ 5T ew) + S0P < S reo). B

We convert both sides of (3.23)) into quadratic forms:

P +2{wt), g+ 5 ne0) +| S premia+ 5 e
’672 2(t.w(t)) — o |2 a74 £)1? ’874 2(w(t
Sz (t,w(t)) a2_62\§( )+ ( 2_52)2\5( )1+ " (w(?))
2
12575 r)aeo)
or we get
32 2 2
w(0)+ ) + )
af ? 2 2
S\e_m (r*(w(®)) + 2(r(w(t))z0, £(8)) + [ED)[) ,
that is,
w0+ )i+ 5 ew] < i)+ € (3.24)

It is evident that for any vector ¢ € R™, with [¢)| = 1, the following relation is true:

(w0 + )i+ 5T e0.0) < |olt) + 2w+ e

Applying the latter inequality to (3.24]), we obtain

ﬁQ ) 042
(00 + g ®)i + =560, <

a2 _ 62
The left-side term of (3.25) may be rewritten as:

2

(w0 + (5 1) )i + 60,0 ) = (wlt) = (o0 v)+

o? o?

ol = 2 (r(w(t)zo +&(8), ¥) = (u(w(?),¥) + —— 72

From the last equality and from (3.25)), it is achieved that

_l’_

o? af

o7 — (r(w(t))2o +&(t),9) — 5

(w(w(t)), ) +
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The multi-valued mapping D(z(t),y(t)) is, by and large, regarded as the ball with center and
radius changing in time. Thus, a support function c(D(:E(t), y(t)),lj)> of D(z(t),y(t)) can be defined
for arbitrary 1» € R, || =1 (see [10, pp. 68]), and this enables to determine a support function

oD (o) y(t),v) = s (dw)
deD* (t,3(t),y(t))
of the multi-valued mapping D*(t,z(t),y(t)) as well. Now, we compute the ¢-derivative of
c(D* (t,x(t),y(t)),w) by the properties of a support function (see [I0, Property 1, pp. 34; Prop-

erty 3, pp. 35; Theorem 1, pp. 67]). To do this, from (2.1)), (3.3), (3.9), (3.15)—(3.19), (3.26]) it is
derived that J

%C(’D* (t,x(t),y(t)),¢) = ﬁc(D(x(t),y(t)) + H(t,x(t),y(t)),zb)

— %c(x(t) + At (), y(t), v() [D(x0, o) — 0], ¢>

t

+%c (azofﬁzo/tf('?)ds— (QQO‘_B/BQ/K(S)MS) B—O/tFp(svw(s))ds,w)

0

o? af

= (uw(®), ) + (Fp(t,2(0)), ) + g5 (rw(t) 20, ¥) = 5 r(w(t)

;32
o? af
+042 — B2 (€(t),¥) — 2 _ 32 1E@)| = (Fp(t,z(t)), )
= (D)) + 5 )% + 60,8 — 2 ()il + 1)
a? a/@

(r(w®)zo +£0):¥) = F— g Irw ()2 + ()]

In consequence, we get

d /.. o? .
e (620, y(1).9) < (w((0),8) + 575 (r(@(0)2 +£0). )
o .
—m\r(w(t))zo +&(1)]-
Referring to (3.26)), we conclude that the relation %c(D* (t, z(t), y(t)),d;) < 0 holds for all ¢ € [0, 7]
and for any ¢ € R", || = 1. The proof is now complete. O

Lemma 3.10. For an arbitrary control v(-) € Vg, the following inclusions are satisfied for all t €
D) u(1) € Dl ) — (e 200, 5(0);
2) y(t) € D(zo,y0) — H(t, z(t),y(t)).
Proof. 1) We should say that Theorem implies
D*(t,z(t),y(t)) € D*(0,2(0),y(0)).
For this reason, from the views of D* (¢, z(t),y(t)) and H (¢, z(t),y(t)) in f the following

arise:
D(.%'(t), y(t)) + H(t> x(t)> y(t)) - 2 (Oa .T(O), y(O)) = D(x(h yO)a
or we can write
D(z(t),y(t)) C D(xo,y0) — H(t, (1), y(t)). (3.27)
2) Tt is evident from that y(t) € D(z(t),y(t)) for ¢t € [0,T.], and accordingly, we see that
y(t) € D(zo,y0) — H(t, z(t),y(t)) is valid owing to . O
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On the strength of Theorem [3.9)and Lemma we define the set of meeting points of the players
in the pursuit game.

Definition 3.11. For an arbitrary control v(-) € Vg, we call

Te

Dy (0,90, Ta) = | (D (w0 30) — H(t,2(), (1)) ) (3.28)

t=0
the set of meeting points of the players, where Tq is defined in Theorem

3.3. The “life-line” game solution. Consider a closed subset L, referred to as a “life-line”, in the
space R™. The Pursuer aims to capture the Evader before the Evader reaches the set L, meamng
that there exists a time 7 > 0 such that their positions coincide, i.e. l‘(T) = y(T) Meanwhile, the
Evader’s goal is to either to reach the subset £ before being captured or to carry on the inequality
x(t) # y(t) for all t > 0. Notably, the Pursuer’s motion is not restricted by the subset £. Additionally,
it is supposed that the initial positions xy and y, are given under the conditions xq # yo and yo # L.

Definition 3.12. It is said that IT-strategy (3.3]) guarantees that Pursuer P wins on the time interval
[0, T G] in the “life-line” game, if there exists a time T' € [0, T G] such that:

(i): x(f) :y(f>,
(ii): y(t) # L for all t € {O,ﬂ.

Definition 3.13. We say that a control v, () € Vg guarantees that Evader E wins in the “life-line”
game if, for any control u(-) € Ug:

(i): there exists a finite time T such that y(1;) € £ and z(t) # y(t) for all ¢ € [0,T,);
(i3): z(t) # y(t) for all t > 0.

Theorem 3.14. Let o > B+ q+p|zo| and LNDp (29, Yo, Tc) = @. Then I-strategy guarantees

that the Pursuer wins on the time interval [0, TG] in the “life-line” game, where Tq is the guaranteed
time of the pursuit.

Proof. The proof arises instantly from Theorems [3.6] and [3.9 and from Lemma [3.10 O

Our next concern will be solving the “life-line” game to the advantage of Evader E.
First off, define the following set:

D(x0,y0) = {d | Bld — zo| = (a + pl2o| + q)|d — wol}- (3.29)
Lemma 3.15. In accord with the definitions of D(zo, o) and D(x¢,%o), the inclusion

D(z0,%0) C D(x0, Yo)
1$ satisfied.

Proof. Due to p >0, ¢ > 0 (see Proposition i and owing to % > %, we have

a + plzg| + «
Oy > Ly, (3.30)
g p
Combining the inequality in (3.29)) with (3.30) yields
a + plzg| + «
|d — xo| > p‘ﬁolqld — ol > B|d — Yol

From here, it follows
o

The lemma is proved. O
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Definition 3.16. The set

DE(ymTEavﬁ) = {dE | dE :y(yOaTﬁavﬁ)}a (331)
is said to be a reachability domain of the Evader in the “life-line” game.

Theorem 3.17. Let o > B+ q + p|zo| and LN DE(yo,Tg,’Uﬁ) # &. Then there exists a control
ve(+) € Vg which guarantees that FEvader E wins in the “life-line” game.

Proof. In accordance with the second condition in the theorem, there is at least one point dg €
DE(yO,Tﬁ, ’UL) N L that
de =y(yo, Tz, ve).

From Definition [3.16] if the Evader employs v, then it gets to the point dg at the time 7.
Let

d— _
e = Te(d) = 0L d e Do) (3.32)
and
=) =L 4D
ve = v )_ﬁ\d—yo|’ € D(z0,Yo)- (3.33)

Now, we prove that the condition (%) of Definition is satisfied, more precisely, the Evader remains
uncaught. Let us suppose the 0pp081te that is, there exists some control u(-) € UG of the Pursuer

giving rise to z(t) = y(t) at a time T less than T}, i.e., T < T;. Due to denotations , we generate
the initial value problem

2(t) = a(t) — v + Fp(t 2(t) — Fe(t,y(t)), 2(0) = 2,
and integrate both sides of this equation, we obtain

t t t

z(t) = 20 + /&(s)ds - /'v[;ds + / (Fp(s,z(s)) — Fr(s,y(s)))ds. (3.34)

0 0 0

Consequently, equation (3.34) allows us to write

T T

= 2o +/ s)ds — /vgds + / (Fp(s,z(s)) — Fr(s,y(s)))ds = 0. (3.35)

0 0

In essence, depending on how the control 4(-) € Ug is chosen, the Pursuer can chase the Evader
along different motion trajectories. In particular, the distance between the players may first increase
and then decrease, or in the second case, it may continuously decrease from the initial distance |z|
at the start of the game. Therefore, the time T will be less in the second case rather than the first
one. For this reason, it suffices to consider the second case, i.e., |z(t)| < |zo| for all ¢ € [0, 77, to prove

the condition (%) of Definition Hence, by dint of (2.3)), (2.5), (2.6, we carry out the following
estimates in (3.35):

zo/f'vﬁds §i|ﬂ(s)ds+/’Fp(s,x (s)) — Fr(s,y(s))|ds

T

< [lalds + [ ((s)12(9)] + a(s))ds < (@ + plzo] + )T

or
]zo - vﬁT] < (o + plzol + )T (3.36)
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Taking the square of both sides of (3.36)) and taking account of |v.| = 3, we get

((a + pl2o| + )% = B2)T? + 2T (e, 20) — |20]* > 0.

From the latter, the solution is

- 1
T>
~ (a4 pleo| +q)? — B2

(Ve 2002 + Lol (@ + plzo] + )2 = 82) = (ve, z0)). (3.37)

In light of the assumption 7, > T it is derived from {i and 1) that

d — yol 1
B (a+plzo] +q)* = B°
We obtain the following inequality from (3.29):

(\/<’Uz:, 20)2 + |20]? (o + pl2o| + ¢)% — 52) — (v, Zo>)- (3.38)

Bld — ol = (o + plzo| + @)ld — yol.
From this and from zo = zq — yo (see ) it is taken that
B%|z0 — (d —yo)|* > (@ + plzo| + q)°|d — wol*,
and this reduces to the following form after using and making some computations:
2] > |d — yol? 2|d — yol
p? g

Now, firstly, multiplying both sides of (3.39) by ((a + p|zo| + ¢)*> — %) and then adding (v, z)? to
both sides gives

(e + plzo| +9)* = 5%) + (v, 20)- (3.39)

d— 2
(ve:20)” + (@ + plzol + 9)° = 7)o" > [<va,20> - | 53/0! ((a+plzol + )% — 52)} :
or
! 2 2 2 2 d — yol
(o + plzo| + q)2 — B2 (v, 20)2 + |20 ((Oé +plzol +¢)2 -0 ) —(vg,20) | > T (3.40)
In the light of (3.38]) and (3.40)), we meet a contradiction. This concludes the proof. O

Corollary 3.18. In accord with the definitions of and , it is confirmed that

DE(y07T£7 UL) - DP(OUo,yOaTG)
1S accurate.

4. EXAMPLES

Example 1. Consider the differential game
P: i=u+x+zcos’t, z(0)=umo, |ult)l<a, (4.1)

E: y=v+y—zsin’t, y0) =y, [v(t) <5 (4.2)

respectively, where z,y, u,v,20 € R", n > 2. zg = g — ¥o.
For Proposition we can take as p = 1 and ¢ = |2zo|. Thus, the function K(¢) in (3.12) will be as
follows: K(t) = |z0| — (o — B — 2|20]) [exp(t) — 1]. Then we will give the following result.

Theorem 4.1. Let o > 5+ 2|zg|. Then II-strategy guarantees that Pursuer P wins on the time

interval [0,Tg] in the pursuit game f, where Tg = In 2=8=1z

a—pB-2[z| "
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Example 2. Consider the differential game

P: & =u+sin(2e"z), z(0) =z, |u(t)] < a, (4.3)

E: y=v+cos < ) , y(0) =50, |v(t)| <8, (4.4)

211’
where x,y,u,v € R™. Here it is obvious that

Fp(t,z)| = |sin (2e7'2)| <1 = h%,
P

1 <1l=h;
cos | —— = .
2 19 > E

To compute Lipschitz constants for Fp(t, ) = sin (2¢'z) and Fg(t,y) = cos (ﬁy), we use the

[Fe(t,y)| =

following statement.

Lemma 4.2. ([9]) Let f : [a,b] x D — R™ be continuous for some domain D C R™. Suppose that
[0f /0x] ezists and is continuous on [a,b] x D. If, for a convex subset W C D, there exists a constant
L > 0 such that }%] < L on [a,b] x W, then the Lipschitz condition

is satisfied for allt € [a,b], z,y € W.
According to this property, we get

OFp(t, x)
ox

OFp(t, 1. /1
:|267tcos(2e*tx)|§2:L1, ‘ E@(y y)‘:‘_t2+1sm<t?+1y>‘S1:L2'

From this and from Assumption it follows that
|Fp(t,x1) — Fp(t,x2)| < kp(t)|xy — 22| = Ly|xy — 22,

|Fp(t,y1) — Fp(t,y2)| < kp(t)|z1 — 22| = Lofyr — ya|.
Consequently, for Proposition wefindp =k} +k =24+1=3andg=hp+h=1+1=2.
Thus, the function K(t) in (3.12]) will be as follows: K(t) = |zo| — (a — 5 — 2 — 3|20]) [exp(3t) — 1] /3.
Then we will give the following result.

Theorem 4.3. Let a > 8+ 3|z9| + 2. Then Il-strategy guarantees that Pursuer P wins on the
time interval [O,TG] in the pursuit game 7, where Tg = %ln a—p-2

a—pB—-3|z0|—2"
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