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p-adic quasi-Gibbs measures for the three-state SOS model on the
binary tree

Akhmedov O.U.

Abstract. In this paper, we study p-adic quasi-Gibbs measures for the three-state SOS model on
a Cayley tree of order two. The existence of new translation-invariant p-adic quasi-Gibbs measures
have been found. Moreover, the boundedness of the found translation-invariant p-adic quasi-Gibbs

measures is proven. Furthermore, we show if
(
θs
p

)
= 1, s is even and p ≡ 1(mod 6), then a phase

transition occurs.
Keywords: Cayley tree, configuration, p-adic numbers, p-adic SOS model, p-adic quasi-Gibbs

measure, periodic measure.
MSC (2020): 46S10, 12J12, 11S99, 30D05, 54H20.

1. Introduction

p-adic numbers, the first introduced by the German mathematician K. Hensel, have garnered
significant attention within the mathematical community. Initially, regarded as objects of pure mathe-
matics, these numbers have since found diverse applications in theoretical physics, including quantum
mechanics, p-adic-valued physical observables [1, 2, 3], and many other areas [4]-[9].

One of the main motivations for studying statistical mechanics models on lattice systems (see, for
example, [10]-[14]) is to explore the phenomenon of phase transitions. In ultrametric spaces, this
phenomenon is marked by the existence of at least two distinct p-adic quasi-Gibbs measures one is
bounded and the other is unbounded, making the analysis of the boundedness of these measures a
natural focus of research.

The solid-on-solid (SOS) model serves as an extension of the Ising model ([15]-[23]) or as a less
symmetric variant of the Potts model ([24]-[28]). For a comprehensive overview of SOS models on
trees, see ([29]-[35]). Rigorous studies of the p-adic SOS model on the Cayley tree have largely
concentrated on the cases m = 2 and p = 3. In particular, in [36] O. Khakimov derived a functional
equation for the model using the p-adic version of the Kolmogorov extension theorem [37]. It was also
rigorously demonstrated that under certain conditions, the model does not exhibit a phase transition.
Furthermore, the conditions for the occurrence of a phase transition were identified through the
analysis of the functional equation.

In [38], the one-dimensional p-adic SOS model with countable set of spin values was investigated,
and it was shown that the set of all p-adic Gibbs measures has the cardinality of the continuum. This
work revealed the existence of a quasi-phase transition in the one-dimensional p-adic SOS model.

In this paper, we enlarge the set of Gibbs measures, which is mostly studied in [36], for the three-

state SOS model on the Cayley tree of order two. Namely, we show that if
(
θs
p

)
= 1, s is even,

p ≡ 1(mod 6), then for the three-state p-adic SOS model on the Cayley tree of order two there are
four translation-invariant quasi-Gibbs measures (TIQGMs), otherwise there is no TIQGM. Moreover,
we show the existence of the phase transition relying on the fact that one of quasi-Gibbs measures is
bounded and four quasi-Gibbs measures are unbounded.

The primary focus of this paper is to extend these findings by studying translation-invariant quasi-
Gibbs measures for the SOS model on a Cayley tree of order two. The paper is structured as follows:
Section 2 provides essential definitions and established results. In Section 3, we introduce concepts
related to the construction of p-adic quasi-Gibbs measures for the p-adic SOS model. In Section 4, we
analyse the p-adic TIQGM for the SOS model. Finally, in Section 5, we study the boundedness of the
obtained p-adic quasi-Gibbs measures for the SOS model.
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2. Preliminaries

2.1. p-adic numbers. Let Q be the field of rational numbers. For a fixed prime number p, any
rational number x 6= 0 can be represented as:

x = pr
n

m
, r, n,m ∈ Z,

where m and n are coprime with p (the greatest common divisors (p, n) = 1 and (p,m) = 1). The
p-adic norm of a number x ∈ Q is defined by the formula (see [39]):

| x |p=
{
p−r, if x 6= 0,

0, if x = 0.

The set of p-adic integers and p-adic unit denoted by Zp and Z∗p, respectively, as follows

Zp = {x ∈ Qp : |x|p ≤ 1},

Z∗p = {x ∈ Qp : |x|p = 1}.

Any p-adic number x 6= 0 can be represented by x = x∗

|x|p , where x∗ ∈ Z∗p. The canonical expansion for

the p-adic number x and p-adic unit x∗ is given by (2.1) and (2.2) below,

x = pγ(x)(x0 + x1p+ x2p
2 + . . .), (2.1)

x∗ = x0 + x1p+ x2p
2 + . . . , (2.2)

where 1 ≤ x0 ≤ p− 1 and 0 ≤ xi ≤ p− 1 for i ∈ N ([39]-[40]).
Due to [40], the equation x2 = a, for

a = pγ(a)(a0 + a1p+ a2p
2 + . . .) 6= 0, a0 6= 0, aj ∈ {0, 1, . . . , p− 1}, j ∈ N,

has a solution x ∈ Qp if and only if the following conditions are satisfied:

(1) The number γ(a) is even;

(2) If p 6= 2, the congruence y2 ≡ a0(mod p) is solvable; if p = 2, the equality a1 = a2 = 0 holds.

A more general type of the equation was studied in [41, 42].
In [41], new symbols “O” and “o” were introduced, which allowed simplifying some calculations.

These symbols replace the notation “≡ (mod ps)” without paying attention to the degree s. A given
p-adic number x the symbol O[x] means a p-adic number with norm p−γ(x), i.e., |x|p = |O(x)|p. The
symbol o[x] means a p-adic number with norm strictly less than p−γ(x), i.e., |o(x)|p < |x|p. It is easy
to see that y = O[x] if and only if x = O[y].

Let a ∈ Qp and r > 0, we introduce the notation

B(a, r) = {x ∈ Qp : |x− a|p < r}.

The p-adic exponential is defined by the series

expp(x) =
∞∑
n=0

xn

n!
,

which converges for x ∈ B(0, p−1/(p−1)).
Note that the set

Ep = {x ∈ Qp : |x− 1|p < p−1/(p−1)},

is the range of the p-adic exponential (see [40]).
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2.2. p-adic Measure and Cayley Tree. Let X be any nonempty set, B be an algebra of subsets
in X, and (X,B) be a measurable space. A function µ : B → Qp is called a p-adic measure if for any
collection of sets A1, . . . , An ∈ B such that Ai ∩Aj = ∅ for i 6= j, the equality

µ

(
n⋃
j=1

Aj

)
=

n∑
j=1

µ(Aj)

holds; a p-adic measure is called probabilistic if µ(X) = 1; a p-adic measure is called bounded (see [3]),
if it satisfies the following condition

sup
A∈B
|µ(A)|p <∞.

The Cayley tree Γk of order k ≥ 1 is an infinite tree i.e., a graph without cycles, such that exactly
k + 1 edges originate from each vertex. Denote by V the set of vertices, and by L the set of edges of
the Cayley tree Γk. Two vertices x and y are called nearest neighbours if there exist an edge l ∈ L
connecting them and denote by l = 〈x, y〉.

Fix x0 ∈ Γk and given vertex x, denote by |x| the number of edges in the shortest path connecting
x0 and x. For x, y ∈ Γk, denote by d(x, y) the number of edges in the shortest path connecting x and
y. For x, y ∈ Γk,we write x ≤ y if x belongs to the shortest path connecting x0 with y, and we write
x < y if x ≤ y and x 6= y. If x ≤ y and |y| = |x|+ 1, then we write x→ y.

We set

Wn = {x ∈ V : |x| = n}, Vn = {x ∈ V : |x| ≤ n}, Ln = {l = 〈x, y〉 ∈ L : x, y ∈ Vn},

S(x) = {y ∈ V : x→ y}, S1(x) = {y ∈ V : d(x, y) = 1}.

The set S(x) is called the set of direct successors of the vertex x.

3. Construction of p-adic Gibbs measures for the p-adic SOS model

We consider p-adic SOS model on the Cayley tree. Let Qp be a field of p-adic numbers and
Φ = {0, 1, ..,m}. A configuration σ on V is defined by the function x ∈ V → σ(x) ∈ Φ. Similarly, one
can define the configuration σn and σ(n) on Vn and Wn, respectively. The set of all configurations on
V (resp. Vn, Wn ) is denoted by Ω = ΦV (resp. ΩVn = ΦVn , ΩWn

= ΦWn ).
For given configurations σn−1 ∈ ΩVn−1

and ϕ(n) ∈ ΩWn
we define a configuration in ΩVn as follows

(σn−1 ∨ ϕ(n))(x) =

{
σn−1(x), if x ∈ Vn−1,
ϕ(n)(x), if x ∈Wn.

A formal p-adic Hamiltonian H : Ω→ Qp of the SOS model is defined by

Hn(σ) = J
∑

〈x,y〉∈Ln

|σ(x)− σ(y)|∞, σ ∈ ΩVn , (3.1)

where J ∈ B(0, p−1/(p−1)) is the coupling constant, Ln is the set of edges in Vn, and | · |∞ denotes the
usual absolute value.

We define a function z : x→ zx, ∀x ∈ V \{x0}, zx ∈ Qp and consider p-adic probability distribution
µ(n)
z on ΩVn defined by

µ(n)
z (σn) =

1

Z
(z)
n

expp{Hn(σn)}
∏
x∈Wn

zσ(x),x n = 1, 2, . . . , (3.2)

where Z(z)
n is the normalizing constant

Z(z)
n =

∑
ϕ∈ΩVn

expp{Hn(ϕ)}
∏
x∈Wn

zσ(x),x. (3.3)
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A p-adic probability distribution µ(n)
z is said to be consistent if for all n ≥ 1 and σn−1 ∈ ΩVn−1

, we
have ∑

ϕ∈ΩWn

µ(n)
z (σn−1 ∨ ϕ) = µ(n−1)

z (σn−1). (3.4)

In this case, by the p-adic analogue of the Kolmogorov theorem [4], there exists a unique measure
µz on the set Ω such that µz ({σ|Vn ≡ σn}) = µ(n)

z (σn) for all n and σn ∈ ΩVn .
If for some function z the measures µ(n)

z satisfy the consistency condition, then there exists a unique
p-adic probability measure, denoted by µz, since it depends on z. Such a measure µz is called p-adic
quasi-Gibbs measure, corresponding to the p-adic SOS model. By QG(H) we denote the set of all
p-adic quasi-Gibbs measures associated with functions z = {z̃x, x ∈ V }. If there exist two different
functions s and z defined on V , such that there exist corresponding measures µs, µz, one is bounded,
and the other is unbounded, then it is said that there exists a phase transition (see [45]).

It is known [36] that the p-adic distributions µ
(n)
z̃x

(σ), n = 1, 2, ..., defined in (3.2), are consistent for
the p-adic SOS model if and only if for every x ∈ V \ {x0}, the following system of equations holds:

zi,x =
∏

y∈S(x)

∑m−1
j=0 θ|i−j|∞zj,y + θm−i∑m−1

j=0 θm−jzj,y + 1
, i = 0, 1, ...,m− 1, (3.5)

here, θ = expp{J} and zi,x = z̃i,x/z̃m,x for i = 0, 1, ...,m− 1.
It follows that for any function z = {zx, x ∈ V } satisfying condition (3.5), there exists a unique

p-adic quasi-Gibbs measure µ.

4. Existence of the p-adic TIQGM

Let Gk be the free product of k + 1 cyclic groups of order two with corresponding generators
a1, a2, . . . , ak+1. It is known that there is a one-to-one correspondence between the set V of vertices
of the Cayley tree Γk and the group Gk (see [31, 47]).

Let G∗k be a normal subgroup of the group Gk. A function zx defined for x ∈ Gk is called G∗k-periodic
if zyx = zx for all x ∈ Gk and y ∈ G∗k. A Gk-periodic function is termed translation-invariant (TI).
Consider the set of all p-adic TIQGM for the model (3.1). Note that this set is contained in QG(H),
but its description for arbitrary m poses a challenging task.

For the system (3.5), the translation-invariant solutions take the form zx = z = (z0, z1, z2, ..., zm) ∈
Qm+1
p for all x ∈ V . Let m = 2, i.e., the spin takes values 0, 1, and 2. In this case, from (3.5), we

obtain  z0 =
(
z0+θz1+θ2

θ2z0+θz1+1

)k
,

z1 =
(

θz0+z1+θ
θ2z0+θz1+1

)k
.

(4.1)

In this subsection we study (4.1) in the case k = 2. Introducing the notations x =
√
z0, y =

√
z1

from (4.1) we have 
x = x2+θ y2+θ2

θ2x2+θ y2+1
,

y = θx2+y2+θ
θ2x2+θy2+1

.
(4.2)

We remark that in [36], the author studied the solutions belong to Ep of the system of equations
(4.1) and it was shown that for m = 2 and k = 2, p 6= 3 there does not exists any solution in the set
Ep. In this work, we study the system of equations (4.1) in the Qp.

We rewrite the system (4.2) as (x− 1) (θ2x2 + θ2x+ θ y2 + θ2 − x) = 0,

θ y3 − y2 + (θ2x2 + 1) y − (x2 + θ) = 0.
(4.3)
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The system (4.3) can be separated as follows: x− 1 = 0,

θ y3 − y2 + (θ2x2 + 1) y − (θ x2 + θ) = 0,
(4.4)

or  θ2x2 + θ2x+ θ y2 + θ2 − x = 0,

θ y3 − y2 + (θ2x2 + 1) y − (θ x2 + θ) = 0.
(4.5)

For the case x = 1, we have the following result:

Proposition 4.1. [44] Let p > 3. For p-adic SOS model on the Cayley tree of order two, there
exist three TIQGMs corresponding to the solutions of equation (4.4) if and only if p ≡ 1(mod 8) or
p ≡ 3(mod 8).

Now we study the case x 6= 1. Substituting y2 from the first equation of (4.5) we obtain

y2 =
x− θ2(x2 + x+ 1)

θ
. (4.6)

Putting the values of equation (4.6) into the second equation (4.5) we have the following

y =
x

θ(x+ 1)
. (4.7)

Using equation (4.7), we can reformulate equation (4.6) in the following form:

θ3x4 + θ(3θ2 − 1)x3 + (4θ3 + 1− 2θ)x2 + θ(3θ2 − 1)x+ θ3 = 0. (4.8)

Introducing a new variable ξ = x+ 1
x
, from (4.8) we have

θ3ξ2 + θ(3θ2 − 1)ξ + 2θ3 − 2θ + 1 = 0. (4.9)

Note that equation (4.9) is a quadratic equation with respect to ξ. We calculate its discriminant:

∆(θ) := θ2(θ4 + 2θ2 + 1− 4θ). (4.10)

Equation (4.9) has a solution in Qp if and only if
√

∆(θ) exists in Qp.
Letting θ = 1 + θsp

s + θs+1p
s+1 + ..., θs 6= 0 and s ∈ N, then we have the following lemma

Lemma 4.2. If
(
θs
p

)
= 1 and s is even, then equation (4.9) has two solutions; otherwise, equation

(4.9) does not have any solution.

Proof. Expanding (4.10) in series with respect to θ, we obtain

θ4 + 2θ2 + 1− 4θ = (θ − 1)4 + 4(θ − 1)3 + 8(θ − 1)2 + 4(θ − 1). (4.11)

Since θ = 1 + θsp
s + θs+1p

s+1 + . . ., we can rewrite equation (4.11) as follows

θ4 + 2θ2 + 1− 4θ = (θsp
s + θs+1p

s+1 + ...)((θsp
s + θs+1p

s+1 + ...)3+

+ 4((θsp
s + θs+1p

s+1 + ...)2) + 8(θsp
s + θs+1p

s+1 + ...) + 4). (4.12)

Using the representation (4.12) we see that the first term of the discriminant (4.11) is equal to

4θsp
s. Thus, under the condition that s is even and

(
θs
p

)
= 1, equation (4.9) has two solutions

ξ1,2 =
1− 3θ2 ±

√
θ4 + 2θ2 − 4θ + 1

2θ2
. (4.13)

�
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Taking into account ξ = x+ 1
x
, we obtain x =

ξ±
√
ξ2−4

2
. Therefore, we have

x1,2 =
ξ1 ±

√
ξ2

1 − 4

2
, x3,4 =

ξ2 ±
√
ξ2

2 − 4

2
. (4.14)

Using (4.13), we find

√
ξ2 − 4 =

√
2u(θ)± 2v(θ)

√
∆(θ)

2θ2
,

where

u(θ) = −3θ4 − 2θ2 − 2θ + 1,

v(θ) = 3θ2 − 1.

Denote

∆1(θ) = 2u(θ)± 2v(θ)
√

∆(θ).

The existence of x in Qp is equivalent to the existence of
√

∆1(θ) in Qp.

Lemma 4.3. The system of equations (4.5) has four solutions if and only if
√

∆1(θ) exists in Qp.

Proof. Let
(
θs
p

)
= 1 and s be even. We rewrite u(θ) in the following manner:

u(θ) = −6− 18(θ − 1)− 20(θ − 1)2 − o[(θ − 1)3],

√
∆(θ) = o[1].

In what follows

∆1(θ) = 2(−6− 18(θ − 1)− 20(θ − 1)2 − o[(θ − 1)3]) = −12 + o[1].

It is clear that equation (4.8) has four solutions in Qp if and only if
√

∆1(θ) exists in Qp. Moreover,√
∆1(θ) exists in Qp if and only if the congruence x2 + 3 ≡ 0(mod p) has a solution (see [46]). The

congruence x2 + 3 ≡ 0(mod p) is solvable if and only if p ≡ 1(mod 6)(see [46]). If equation (4.8) has
four solutions, then equation (4.7) will also have four solutions. It follows that the system of equations
(4.5) also has four solutions. �

Theorem 4.4. Let N be the number of p-adic TIQGMs for the SOS model on the Cayley tree of order
two. Then the following assertions hold:

N =

 4, if
(
θs
p

)
= 1, s is even and p ≡ 1(mod 6),

0, otherwise.
(4.15)

Proof. Due to Lemma 4.3, the system (4.5) has four solutions, which implies the existence of four
TIQGMs. �

Remark 4.5. The measures found in Theorem 4.4 are different from the measures found in Proposition
4.1.
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5. Boundedness of the p-adic TIQGMs.

To prove the boundedness of the p-adic TIQGM, we state the following lemma:

Lemma 5.1. Let
(
θs
p

)
= 1, s is even, p ≡ 1(mod 6), k = 2 and m = 2. zi = (z

(i)
0 , z

(i)
1 ), i = 1, 4 be the

TI solutions of system (3.5). Then the following relations hold:

1. |z(i)
0 |p = |z(i)

1 |p = 1, i = 1, 4;

2. |θ2z
(i)
0 + θz

(i)
1 + 1|p ≤ 1

p
, i = 1, 4.

Proof. 1. Let zi = (z
(i)
0 , z

(i)
1 ), i = 1, 4 be translation-invariant solutions of the system of equations (3.5)

for k = 2. Then from the solution of equation (4.5), we find the p-adic norm |zi0|p and |zi1|p, where
zi0 = x2

i and zi1 = y2
i , i = 1, 2, 3, 4. At first, we find the p-adic norm of |zi0|p = |x2

i |p. Using (4.14) we
get

|x1,2|p =

∣∣∣∣∣ξ1 ±
√
ξ2

1 − 4

2

∣∣∣∣∣
p

=

∣∣∣∣∣∣∣∣
3θ2−1+

√
θ4+2θ2−4θ+1
2θ2 ±

√(
3θ2−1+

√
θ4+2θ2−4θ+1
2θ2

)2

− 4

2

∣∣∣∣∣∣∣∣
p

, (5.1)

|x3,4|p =

∣∣∣∣∣ξ2 ±
√
ξ2

2 − 4

2

∣∣∣∣∣
p

=

∣∣∣∣∣∣∣∣
3θ2−1−

√
θ4+2θ2−4θ+1
2θ2 ±

√(
3θ2−1−

√
θ4+2θ2−4θ+1
2θ2

)2

− 4

2

∣∣∣∣∣∣∣∣
p

. (5.2)

From (5.1) and the strong triangle equality we have

|x|p =

∣∣∣∣∣∣
3θ2−1+

√
θ4+2θ2−4θ+1
2θ2 +

√
−3+o[1]

θ2

2

∣∣∣∣∣∣
p

=

∣∣∣∣∣1− 3θ2 + 2
√
−3 + o[1]

4θ2

∣∣∣∣∣
p

=

∣∣∣∣∣−1 +
√
−3 + o[1]

2

∣∣∣∣∣
p

= 1.

It implies that |x1,2|p = 1. Observe that the p-adic norm |x3,4|p = 1 and |z(i)
0 |p = |x2

i |p = 1, where
i = 1, 4.

Now, we find the p-adic norm of |z(i)
1 |p = |y2

i |p. In (4.7) we find

|y1|p =

∣∣∣∣ x1

θ(x1 + 1)

∣∣∣∣
p

=

∣∣∣∣∣ −1+
√
−3

2
+ o[1]

−1+
√
−3

2
+ 1

∣∣∣∣∣
p

=

∣∣∣∣∣1 +
√
−3 + o[1]

2

∣∣∣∣∣
p

= 1.

It implies that |y1,2|p = 1. Observe that the p-adic norm |y3,4|p = 1 and |z(i)
1 |p = |y2

i |p = 1, where
i = 1, 4.

2. Using the solutions of equation (4.5), we determine |θ2zi0 + θzi1 + 1|p, where i = 1, 4. According

to Case 1 we know that z
(i)
0 = x2

i , and z
(i)
1 = y2

i , where i = 1, 4 and from the strong triangle equality
we have

|θ2z
(i)
0 + θz

(i)
1 + 1|p =

∣∣∣∣∣∣θ2

(
1 +
√
−3 + o[1]

2

)2

+ θ

(
1 +
√
−3 + o[1]

2

)2

+ 1

∣∣∣∣∣∣
p

=

∣∣∣∣∣−1−
√
−3 + o[1]

2
+
−1 +

√
−3 + o[1]

2
+ 1

∣∣∣∣∣
p

= |o[1]|p ≤
1

p
.

�
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Theorem 5.2. Let
(
θs
p

)
= 1, s be even, p ≡ 1(mod 6). For the p-adic SOS model with three-state on

a Cayley tree of order two p-adic TIQGM µzi is unbounded iff zi 6∈ Ep, i = 1, 4.

Proof. Let zi, i = 1, 4 be translation-invariant solutions of (3.5) for k = 2. Then (see [36]) due to

∏
y∈S(x)

m∑
j=0

θ|i−j|∞zj,y + 1 = a(x)zi,x, i = 0,m− 1,

for all x ∈ V \ {x0} we find

a(x) =
∏

y∈S(x)

(
1∑
j=0

θ|2−j|∞zj,y + 1

)
. (5.3)

Since θ ∈ Ep and zi ∈ Z∗p , due to the strong triangle inequality and Lemma 5.1 we obtain

|a(x)|p =

{
1, if zi ∈ Ep;
≤ 1

p2 , if zi 6∈ Ep. (5.4)

Hence, we get

|An(x)|p =
∏

y∈Wn−1

|a(y)|p =

{
1, if zi ∈ Ep;
≤ p−2|Wn−1|, if zi 6∈ Ep.

(5.5)

Here we used the recursive formula Zn,z = An−1Zn−1,z. From (5.5) we get

|Zn(x)|p =
∏

x∈Vn−1

|An−1(x)|p =

{
1, if zi ∈ Ep;
≤ p−2|Vn−1|, if zi 6∈ Ep.

(5.6)

For any configuration σn ∈ ΩVn considering (5.6) we have

|µ(n)
zi

(σ)|p =

∣∣∣∣expp{Hn(σ)}
∏

x∈Wn

zσ(x),x

∣∣∣∣
p

|Zn,zi |p
=

=
1

|Z
n,z

(t)
i
|p

=

{
1, if zi ∈ Ep;
≥ p2|Vn−1|, if zi 6∈ Ep.

(5.7)

This implies that the measure µ(n)
zi

(σn) is unbounded if and only if zi 6∈ Ep, i = 1, 4. �

Summarising, we get the following result:

Theorem 5.3. Let
(
θs
p

)
= 1, s be even and p ≡ 1(mod 6). Then for the p-adic SOS model with

three-state on the Cayley tree of order two, a phase transition occurs.
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Construction of optimal quadrature formulas for Cauchy type

singular integrals in the L
(m)
2 (−1, 1) space
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Abstract. In the present paper in L
(m)
2 (−1, 1) space an optimal quadrature formula is constructed

for approximate calculation of the Cauchy type singular integral. Explicit formulas for the optimal
coefficients are obtained.
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optimal coefficients.
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1. Introduction. Statement of the Problem

Many problems of science and engineering are naturally reduced to singular integral equations.
Moreover plane problems are reduced to one dimensional singular integral equations (see [12]). The
theory of one dimensional singular integral equations is given, for example, in [9, 13]. It is known that
the solutions of such integral equations are expressed by singular integrals. Therefore approximate
calculation of singular integrals with high exactness is actual problem of numerical analysis. For the
singular integral of the Cauchy type we consider the following quadrature formula

1∫
−1

ϕ(x)

x− t
dx ∼=

N∑
β=0

C[β]ϕ(xβ) (1.1)

with the error functional

`(x) =
ε[−1,1](x)

x− t
−

N∑
β=0

C[β]δ(x− xβ), (1.2)

where −1 < t < 1, C[β] are the coefficients, xβ (∈ [−1, 1]) are the nodes, N = 0, 1, 2, ..., ε[−1,1](x) is
the characteristic function of the interval [−1, 1], δ is the Dirac delta function, ϕ is a function of the

space L
(m)
2 (−1, 1). Here L

(m)
2 (−1, 1) is the Sobolev space of functions with a square integrable m - th

generalized derivative and equipped with the norm

‖ϕ|L(m)
2 (−1, 1)‖ =


1∫
−1

(ϕ(m)(x))2dx


1/2

and

{
1∫
−1

(ϕ(m)(x))2dx

}1/2

<∞.

In order that the error functional (1.2) is defined on the space L
(m)
2 (−1, 1) it is necessary to impose

the following conditions (see [1])

(`(x), xα) = 0, α = 0, 1, 2, ...,m− 1. (1.3)

Hence it is clear that for existence of the quadrature formulas of the form (1.1) the condition N ≥ m−1
has to be met.

The difference

(`, ϕ) =

∞∫
−∞

`(x)ϕ(x)dx =

1∫
−1

ϕ(x)

x− t
dx−

N∑
β=0

C[β]ϕ(xβ) (1.4)

is called the error of the formula (1.1)
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By the Cauchy-Schwarz inequality

|(`, ϕ)| ≤
∥∥∥ϕ|L(m)

2

∥∥∥ · ∥∥∥`|L(m)∗
2

∥∥∥
the error (1.4) of the formula (1.1) on functions of the space L

(m)
2 (−1, 1) is reduced to finding the

norm of the error functional ` in the conjugate space L
(m)∗
2 (−1, 1).

Obviously the norm of the error functional ` depends on the coefficients and the nodes of the
quadrature formula (1.1). The problem of finding the minimum of the norm of the error functional `
by coefficients and by nodes is called the S.M. Nikol’skii problem, and the obtained formula is called
the optimal quadrature formula in the sense of Nikol’skii. This problem was first considered by S.M.
Nikol’skii [14], and continued by many authors, see e.g. [15] and references therein. Minimization of
the norm of the error functional ` by coefficients when the nodes are fixed is called Sard’s problem and
the obtained formula is called the optimal quadrature formula in the sense of Sard. First this problem
was investigated by A. Sard [16].

There are several methods of construction of optimal quadrature formulas in the sense of Sard such
as the spline method, φ- function method (see e.g. [5, 11]) and Sobolev’s method which is based on
construction of discrete analogs of a linear differential operator (see e.g. [21, 1]).

The main aim of the present paper is to construct optimal quadrature formulas in the sense of Sard

of the form (1.1) in the space L
(m)
2 (−1, 1) by the Sobolev method for approximate integration of the

Cauchy type singular integral. This means to find the coefficients C[β] which satisfy the following
equality

‖˚̀|L(m)∗
2 ‖ = inf

C[β]
‖`|L(m)∗

2 ‖. (1.5)

Thus, in order to construct optimal quadrature formulas in the form (1.1) in the sense of Sard we
have to consequently solve the following problems.

Problem 1. Find the norm of the error functional (1.2) of the quadrature formula (1.1) in the

space L
(m)∗
2 (−1, 1).

Problem 2. Find the coefficients C[β] which satisfy equality (1.4).
Many works are devoted to the problem of approximate integration of Cauchy type singular integrals

(see, for instance, [8, 9, 10, 4, 7, 10, 12, 18, 19, 20] and references therein).
The rest of the paper is organized as follows. In Section 2 using a concept of extremal function

we find the norm of the error functional (1.2). Section 3 is devoted to a minimization of ‖`‖2 with
respect to the coefficients C[β]. We obtain a system of linear equations for the coefficients of the

optimal quadrature formula in Sard’s sense of the form (1.1) in the space L
(m)
2 (−1, 1). Moreover,

the existence and uniqueness of the corresponding solution is proved. In Section 4 we give some
definitions and known results which we use in the proof of the main results. In Section 5 we give the
algorithm for construction of optimal quadrature formulas of the form (1.1). Finally, Explicit formulas
for coefficients of the optimal quadrature formulas of the form (1.1) are found in Section 6.

2. The extremal function and the expression for the error functional norm

To solve Problem 1, i.e., for finding the norm of the error functional (1.2) in the space L
(m)
2 (−1, 1)

a concept of the extremal function is used [1]. The function ψ`(x) is said to be the extremal function
of the error functional (1.2) if the following equality holds

(`, ψ`) = ‖`|L(m)∗
2 ‖ ‖ψ`|L(m)∗

2 ‖ (2.1)

In the space L
(m)
2 the extremal function ψ`(x) of a functional `(x) is found by S.L. Sobolev [21, 1].

This extremal function has the form

ψ` = (−1)m`(x) ∗Gm(x) + Pm−1(x), (2.2)

where

Gm(x) =
|x|2m−1

2 · (2m− 1)!
(2.3)
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is a solution of the equation
d2m

dx2m
Gm(x) = δ(x), (2.4)

Pm−1(x) is a polynomial of degree m − 1, and ∗ is the operation of convolution, and is defined as
follows

f(x) ∗ g(x) =

∫ ∞
−∞

f(x− y)g(y)dy =

∫ ∞
−∞

f(y)g(x− y)dy.

It is well known that for any functional `(x) in L
(m)∗
2 the equality

‖`|L(m)∗
2 ‖2 = (`, ψ`) = (`(x), (−1)m`(x) ∗Gm(x)) =

∫ ∞
−∞

`(x)

(
(−1)m

∫ ∞
−∞

`(y)Gm(x− y)dy

)
dx

holds [1].
Applying this equality to the error functional (1.2) we obtain the following

‖`‖2 = (`, ψ`) = (−1)m
[ N∑
β=0

N∑
γ=0

CβCγ
|xβ − xγ |2m−1

2 · (2m− 1)!
(2.5)

−2
N∑
β=0

C[β]

1∫
−1

|x− xβ|2m−1

2 · (2m− 1)! (x− t)
dx+

1∫
−1

1∫
−1

|x− y|2m−1

2(2m− 1)!(x− t)(y − t)
dxdy

]
.

Thus, Problem 1 is solved for quadrature formulas of the form (1.1) in the space L
(m)
2 (−1, 1).

3. The system for optimal coefficients of the quadrature formula (1.1)

Assume that the nodes xβ of the quadrature formula (1.1) are fixed. The error functional (1.2)
satisfies conditions (1.3). The norm of the error functional `(x) is a multivariable function with
respect to the coefficients C[β] (β = 0, N). For finding the point of the conditional minimum of the
expression (2.5), under the conditions (1.3), we apply the Lagrange method.

We denote C = (C[0], C[1], ..., C[N ]) and λ = (λ0, λ1, ..., λm−1). Consider the function

Ψ(C, λ) = ‖`‖2 − 2(−1)m
m−1∑
α=0

λα(`(x), xα).

Equating to zero the partial derivatives of Ψ(C, λ) by C[β] (β = 0, N) and λ0, λ1, ..., λm−1, we get the
following system of linear equations

N∑
γ=0

C[γ]
|xβ − xγ |2m−1

2(2m− 1)!
+

m−1∑
α=0

λαx
α
β = fm(xβ), β = 0, 1, 2, ..., N, (3.1)

N∑
γ=0

C[γ]xαγ = gα, α = 0, 1, 2, ...,m− 1, (3.2)

where

fm(xβ) =

∫ 1

−1

|x− xβ|2m−1

2(2m− 1)!(x− t)
dx =

(t− xβ)2m−1

2 · (2m− 1)!
ln

∣∣∣∣ 1− t2

(xβ − t)2

∣∣∣∣ (3.3)

+
2m−1∑
i=1

(
2m− 1

i

)
(t− xβ)2m−1−i

2 · (2m− 1)! · i!
(
(1− t)i + (−1− t)i − 2(xβ − t)i

)

gα =

∫ 1

−1

xα

x− t
dx =

α∑
j=1

(
α

i

)
tα−j

j!

(
(1− t)j − (−1− t)j

)
+ tα ln

∣∣∣∣ 1− t
−1− t

∣∣∣∣ , (3.4)

and C[γ], γ = 0, 1, ..., N and λα, α = 0, 1, ...,m− 1 are unknowns.



18 Akhmedov D.M.

4. Preliminaries

In this section we give some definitions and formulas that we need to prove the main results. Here
we use the concept of discrete argument functions and operations on them. The theory of discrete
argument functions is given in [1, 21]. For completeness we give some definitions.

Assume that the nodes xβ are equally spaced, i.e., xβ = hβ, h = 1
N

, N = 1, 2, ..., functions ϕ(x)
and ψ(x) are real-valued and defined on the real line R.

Definition 4.1. The function ϕ(hβ) is a function of discrete argument if it is given on some set of
integer values of β.

Definition 4.2. The inner product of two discrete functions ϕ(hβ) and ψ(hβ) is given by

[ϕ(hβ), ψ(hβ)] =
∞∑

β=−∞

ϕ(hβ) · ψ(hβ),

if the series on the right hand side of the last equality converges absolutely.

Definition 4.3. The convolution of two functions ϕ(hβ) and ψ(hβ) is the inner product

ϕ(hβ) ∗ ψ(hβ) = [ϕ(hγ), ψ(hβ − hγ)] =
∞∑

γ=−∞

ϕ(hγ) · ψ(hβ − hγ).

The Euler-Frobenius polynomials Ek(x), k = 1, 2, ... are defined by the following formula [6]

Ek(x) =
(1− x)k+2

x

(
x
d

dx

)k x

(1− x)2
, (4.1)

E0(x) = 1.
For the Euler-Frobenius polynomials Ek(x) the following identity holds

Ek(x) = xkEk

(
1

x

)
, (4.2)

and also the following is true

Lemma 4.4. (Lemma 3 of [6]). Polynomial Qk(x) which is defined by the formula

Qk(x) = (x− 1)k+1
k+1∑
i=0

∆i0k+1

(x− 1)i
(4.3)

is the Euler-Frobenius polynomial (4.1) of degree k, i.e. Qk(x) = Ek(x), where ∆i0k =∑i
l=1(−1)i−lC l

i l
k.

The following formula is valid [8]:

n−1∑
γ=0

qγγk =
1

1− q

k∑
i=0

(
q

1− q

)i
∆i0k − qn

1− q

k∑
i=0

(
q

1− q

)i
∆iγk|γ=n, (4.4)

where ∆iγk is the finite difference of order i of γk, q is the ratio of a geometric progression. When
|q| < 1 from (4.4) we have

∞∑
γ=0

qγγk =
1

1− q

k∑
i=0

(
q

1− q

)i
∆i0k. (4.5)

In our computations we need the discrete analogue Dm(hβ) of the differential operator d2m/dx2m

which satisfies the following equality

hDm(hβ) ∗Gm(hβ) = δ(hβ), (4.6)
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where Gm(hβ) = |hβ|2m−1

2(2m−1)!
, δ(hβ) is equal to 0 when β 6= 0 and is equal to 1. It should be noted that

the operator Dm(hβ) was firstly introduced and investigated by S.L. Sobolev [1]. In [17] the discrete
analogue Dm(hβ) of the differential operator d2m/dx2m, which satisfies equation (4.6), is constructed
and the following result was proved.

Lemma 4.5. The discrete analogue of the differential operator d2m/dx2m has the form

Dm(hβ) = p



m−1∑
k=1

Akq
|β|−1
k for |β| ≥ 2,

1 +
m−1∑
k=1

Ak for |β| = 1,

C +
m−1∑
k=1

Ak
qk

for β = 0,

(4.7)

where

p =
(2m− 1)!

h2m
, Ak =

(1− qk)2m+1

E2m−1(qk)
, C = −22m−1, (4.8)

E2m−1(q) is the Euler-Frobenius polynomial of degree 2m− 1, qk are the roots of the Euler-Frobenius
polynomial E2m−2(q), |qk| < 1, h is a small positive parameter.

Furthermore several properties of the discrete argument function Dm(hβ) were proved in [17]. Here
we give the following property of Dm(hβ) which we need in our computations.

Lemma 4.6. The discrete argument function Dm(hβ) and the monomials (hβ)k are related to each
other as follows

∞∑
β=−∞

Dm(hβ)(hβ)k =

{
0 when 0 ≤ k ≤ 2m− 1,
(2m)! when k = 2m,

where B2m is the Bernoulli number.

5. The algorithm for computation of coefficients of optimal quadrature formula
(1.1)

In the present section we give an algorithm for solution of system (3.1)-(3.2) when the nodes xβ
are equally spaced, i.e., xβ = hβ − 1, h = 2

N
, N ≥ m − 1. Here we use similar method suggested

by S.L. Sobolev [21] for finding the coefficients of optimal quadrature formulas in the Sobolev space

L
(m)
2 (0, 1).
Suppose that C[β] = 0 when β < 0 and β > N . Using Definition 4.3, we rewrite system (3.1)-(3.2)

in the convolution form:

Gm(hβ) ∗ C[β] + Pm−1(hβ − 1) = fm(hβ), β = 0, 1, ..., N, (5.1)
N∑
β=0

C[β] · (hβ − 1)α = gα, α = 0, 1, ...,m− 1, (5.2)

where Pm−1(hβ − 1) =
m−1∑
α=0

pα(hβ − 1)α.

Thus we have the following problem.
Problem 3. Find the discrete function C[β] and polynomial Pm−1(hβ − 1) of degree m− 1 which

satisfy the system (5.1)-(5.2).
Further, we investigate Problem 3. Instead of C[β] we introduce the following functions

v(hβ) = Gm(hβ) ∗ C[β], (5.3)

u(hβ) = v (hβ) + Pm−1(hβ − 1). (5.4)
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In such statement the coefficients C[β] are expressed by the function u(hβ), i.e. taking into account
(4.6), (5.4) and Lemmas 4.5 and 4.6, for the coefficients we have

C[β] = hDm(hβ) ∗ u(hβ). (5.5)

Thus, if we find the function u(hβ), then the coefficients C[β] will be found from equality (5.5).
To calculate the convolution (5.5) it is required to find the representation of the function u(hβ) for
all integer values of β. From equality (5.1) we get that u(hβ) = fm(hβ) when hβ − 1 ∈ [−1, 1], i.e.
β = 0, 1, ..., N. Now we need to find the representation of the function u(hβ) when β < 0 and β > N .

Since C[β] = 0 when hβ − 1 /∈ [−1, 1] then C[β] = hDm(hβ) ∗ u(hβ) = 0, hβ − 1 /∈ [−1, 1].
Now we calculate the convolution v(hβ) = Gm(hβ) ∗ C[β] when β ≤ 0 and β ≥ N . Suppose β ≤ 0,

then taking into account that Gm(hβ) = |hβ|2m−1

2(2m−1)!
and equality (5.2), we have

v(hβ) =
∞∑

γ=−∞

C[γ]Gm(hβ − hγ) = −
N∑
γ=0

C[γ]
2m−1∑
k=0

(hβ − 1)2m−1−k(−1)k(hγ − 1)k

2 · k! · (2m− 1− k)!

= −
m−1∑
k=0

(hβ − 1)2m−1−k(−1)k

2 · k! · (2m− 1− k)!

N∑
γ=0

C[γ](hγ − 1)k −
2m−1∑
k=m

(hβ − 1)2m−1−k(−1)k

2 · k! · (2m− 1− k)!

N∑
γ=0

C[γ](hγ − 1)k

= −R2m−1(hβ − 1)−Qm−1(hβ − 1),

where R2m−1(hβ−1) =
m−1∑
k=0

(hβ−1)2m−1−k(−1)k

2·k!·(2m−1−k)!
gk is the polynomial of degree 2m−1 and Qm−1(hβ−1) =

2m−1∑
k=m

(hβ−1)2m−1−k(−1)k

2·k!·(2m−1−k)!

N∑
γ=0

C[γ](hγ − 1)k is an unknown polynomial of degree m− 1 of (hβ − 1).

Thus when β ≤ 0 we get

v(hβ) = −R2m−1(hβ − 1)−Qm−1(hβ − 1), (5.6)

Similarly, in the case β ≥ N for the convolution v(hβ) = Gm(hβ) ∗ C[β] we obtain

v(hβ) = R2m−1(hβ − 1) +Qm−1(hβ − 1). (5.7)

We denote

P−m−1(hβ − 1) = Pm−1(hβ − 1)−Qm−1(hβ − 1), (5.8)

P+
m−1(hβ − 1) = Pm−1(hβ − 1) +Qm−1(hβ − 1), (5.9)

where P−m−1(hβ − 1) =
m−1∑
α=0

p−α · (hβ − 1)α, P+
m−1(hβ − 1) =

m−1∑
α=0

p+
α · (hβ − 1)α.

Taking into account (5.4), (5.6) and (5.7) we get the following problem
Problem 4. Find the solution of the equation

hDm(hβ) ∗ u(hβ) = 0, hβ /∈ [0, 1] (5.10)

having the form:

u(hβ) =


−R2m−1(hβ − 1) + P−m−1(hβ − 1), β ≤ 0,

fm(hβ), 0 ≤ β ≤ N,
R2m−1(hβ − 1) + P+

m−1(hβ − 1), β ≥ N.
(5.11)

Here P−m−1(hβ−1) and P+
m−1(hβ−1) are unknown polynomials of degree m−1 with respect to (hβ−1).

If we find P−m−1(hβ − 1) and P+
m−1(hβ − 1) then from (5.8), (5.9) we have

Pm−1(hβ − 1) =
1

2

(
P+
m−1(hβ − 1) + P−m−1(hβ − 1)

)
, (5.12)

Qm−1(hβ − 1) =
1

2

(
P+
m−1(hβ − 1)− P−m−1(hβ − 1)

)
. (5.13)
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Unknowns P−m−1(hβ − 1), P+
m−1(hβ − 1) can be found from equation (5.10), using the function

Dm(hβ) defined by (4.7). Then we obtain explicit form of the function u(hβ) and from (5.5) we find
the coefficients C[β]. Furthermore from (5.12) we get Pm−1(hβ − 1).

Thus Problem 4 and respectively Problems 3 will be solved.

6. Computation of coefficients of the optimal quadrature formula (1.1)

In this section, using the above algorithm, we obtain explicit formulas for coefficients of the optimal
quadrature formula (1.1). It should be noted that the quadrature formula (1.1) is exact for polynomials
of degree ≤ m− 1.

The following holds

Theorem 6.1. Coefficients of the optimal quadrature formulas (1.1), with equally spaced nodes in the

space L
(m)
2 (−1, 1), have the following form

C[0] = hp

[
Cfm(0) + fm(h) +

m−1∑
α=0

p−α · (−1− h)α +
m−1∑
α=0

(1 + h)2m−1−αgα
2α!(2m− 1− α)!

]
+

+
m−1∑
k=1

Akhp

qk

[
N∑
γ=0

qγkfm(hγ) +Mk + qNk Nk

]
,

C[β] = hp

[
fm(hβ − h) + Cfm(hβ) + fm(hβ + h)

]
+

+
m−1∑
k=1

Akhp

qk

[
N∑
γ=0

q
|β−γ|
k fm(hγ) + qβkMk + qN−βk Nk

]
, β = 1, 2, ..., N − 1,

C[N ] = hp

[
Cfm(2) + fm(2− h) +

m−1∑
α=0

p+
α · (1 + h)α +

m−1∑
α=0

(1 + h)2m−1−α(−1)αgα
2α!(2m− 1− α)!

]
+

+
m−1∑
k=1

Akhp

qk

[
N∑
γ=0

qN−γk fm(hγ) + qNk Mk +Nk

]
,

pα =
1

2

(
p+
α + p−α

)
, α = 0, 1, ...,m− 1,

where

Mk =
m−1∑
α=0

gα
2α!

2m−1−α∑
i=0

hi

i!(2m− 1− α− i)!

i∑
j=0

qjk∆
j0i

(1− qk)j+1
+

+
m−1∑
α=1

p−α (−1)α
α∑
i=0

α!hi

i!(α− i)!

i∑
j=0

qjk∆
j0i

(1− qk)j+1
+

p−0 qk
1− qk

, (6.1)

Nk =
m−1∑
α=0

gα(−1)α

2α!

2m−1−α∑
i=0

hi

i!(2m− 1− α− i)!

i∑
j=0

qjk∆
j0i

(1− qk)j+1
+

+
m−1∑
α=1

p+
α

α∑
i=0

α!hi

i!(α− i)!

i∑
j=0

qjk∆
j0i

(1− qk)j+1
+

p+
0 qk

1− qk
, (6.2)

and p, C, Ak are defined by (4.8), qk are roots of the Euler-Frobenius polynomial E2m−2(q), |qk| < 1,

∆i0α =
∑i

l=1(−1)i−l
(
i
l

)
lα, p−α , p

+
α , α = 0, 1, ...,m− 1 are defined from system (6.6)-(6.7).
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Proof. First we find the expressions for p−0 and p+
0 . When β = 0 and β = N from (5.11) for p−0 and

p+
0 we get

p−0 = fm(0)−
m−1∑
α=0

gα
2α!(2m− 1− α)!

−
m−1∑
α=1

p−α (−1)α, (6.3)

p+
0 = fm(2)−

m−1∑
α=0

(−1)αgα
2α!(2m− 1− α)!

−
m−1∑
α=1

p+
α . (6.4)

Now we have 2m− 2 unknowns p−α , p+
α , α = 1, 2, ...,m− 1.

Taking into account (4.7), (5.11), (6.3) and (6.4), from (5.10) we get the following system

m−1∑
α=1

p−α (−1)α
α∑
j=1

Cj
α

∞∑
γ=1

Dm(hβ + hγ)(hγ)j +
m−1∑
α=1

p+
α

∞∑
γ=1

Dm(2 + hγ − hβ)
α∑
j=1

Cj
α(hγ)j

= −
N∑
γ=0

Dm(hβ − hγ)fm(hγ) +
∞∑
γ=1

Dm(hβ + hγ)

[
−

m−1∑
α=0

((hγ + 1)2m−1−α − 1) gα
2α!(2m− 1− α)!

− fm(0)

]

−
∞∑
γ=1

Dm(2 + hγ − hβ)

[m−1∑
α=0

((hγ + 1)2m−1−α − 1) (−1)αgα
2α!(2m− 1− α)!

+ fm(2)

]
, (6.5)

where β = −1,−2, ...,−(m− 1) and β = N + 1, N + 2, ..., N +m− 1.
First we consider the cases β = −1,−2, ...,−(m− 1). From (6.5) replacing β by −β and using (4.7)

and (4.5), after some calculations for β = 1, 2, ...,m − 1, we get the following system of m − 1 linear
equations

m−1∑
α=1

p−αB
−
βα +

m−1∑
α=1

p+
αB

+
βα = Tβ, β = 1, 2, ...,m− 1, (6.6)

where

B−βα = (−1)α
α∑
j=1

Cj
αh

j

[
m−1∑
k=1

Ak
qk

∞∑
γ=1

q
|β−γ|
k γj + (β − 1)j + Cβj + (β + 1)j

]
,

B+
βα =

m−1∑
k=1

Akq
N+β−1
k

α∑
j=1

Cj
αh

j

j∑
i=1

qik∆
i0j

(1− qk)i+1
,

Tβ = −
m−1∑
k=1

Akq
β−1
k

N∑
γ=0

qγkfm(hγ)−
(
fm(2)−

m−1∑
α=0

(−1)αgα
2α!(2m−1−α)!

)
m−1∑
k=1

Akq
N+β
k

1−qk
+

+

(
m−1∑
α=0

gα
2α!(2m−1−α)!

− fm(0)

)[
m−1∑
k=1

Ak
qk

∞∑
γ=1

q
|β−γ|
k + 2 + C

]
−
m−1∑
k=1

Ak
qk

∞∑
γ=1

q
|γ−β|
k

m−1∑
α=0

(1+hγ)2m−1−αgα
2α!(2m−1−α)!

−
m−1∑
k=1

Ak
∞∑
γ=1

qN+γ+β−1
k

m−1∑
α=0

(1+hγ)2m−1−α(−1)αgα
2α!(2m−1−α)!

−

−
m−1∑
α=0

gα
2α!(2m−1−α)!

(
(1 + h(β − 1))2m−1−α + C(1 + hβ)2m−1−α + (1 + h(β + 1))2m−1−α

)
.

Here β = 1, 2, ...,m− 1 and α = 1, 2, ...,m− 1.
Now we consider the cases β = N + 1, N + 2, ..., N +m− 1. From (6.5) replacing β by N + β and

using (4.7) and (4.5), after some calculations for β = 1, 2, ...,m − 1 we get the following system of
m− 1 linear equations

m−1∑
α=1

p−αA
−
βα +

m−1∑
α=1

p+
αA

+
βα = Sβ, β = 1, 2, ...,m− 1, (6.7)



Construction of optimal quadrature formulas for Cauchy ... 23

where

A−βα = (−1)α
α∑
j=1

Cj
αh

j
m−1∑
k=1

Akq
N+β−1
k

α∑
i=1

qik∆
i0α

(1− qk)i+1
,

A+
βα =

α∑
j=1

Cj
αh

j

[
m−1∑
k=1

Ak
qk

∞∑
γ=1

q
|β−γ|
k γj + (β − 1)j + Cβj + (β + 1)j

]
,

Sβ =
m−1∑
k=1

Akq
N+β−1
k

[
−

N∑
γ=0

q−γk fm(hγ)− fm(0) qk
1−qk

+
∞∑
γ=1

qγk
m−1∑
α=0

(1−(hγ+1)2m−1−α)gα
2α!(2m−1−α)!

]
−
m−1∑
k=1

Ak
qk

∞∑
γ=1

q
|β−γ|
k

[
m−1∑
α=0

((1+hγ)2m−1−α−1)(−1)αgα
2α!(2m−1−α)!

+ fm(2)

]
− fm(2)(2 + C)−

−
m−1∑
α=0

(−1)αgα
2α!(2m−1−α)!

(
(1 + h(β − 1))2m−1−α + C(1 + hβ)2m−1−α + (1 + h(β + 1))2m−1−α − 3

)
.

Here β = 1, 2, ...,m− 1 and α = 1, 2, ...,m− 1.
Thus for the unknowns p−α , p+

α , α = 1, 2, ...,m− 1 we obtained system (6.6), (6.7) of 2m− 2 linear
equations. Since our optimal quadrature problem has a unique solution, the main matrix of this
system is non singular. Unknowns p−α , p+

α , α = 1, 2, ...,m − 1 can be found from system (6.6), (6.7).
Then taking into account (5.12), using (6.3) and (6.4) we have

pα =
1

2

(
p+
α + p−α

)
, α = 0, 1, ...,m− 1.

Now we find the coefficients C[β], β = 0, 1, ..., N . From (5.5), taking into account (4.7), we deduce

C[β] = h

[
N∑
γ=0

Dm(hβ − hγ)fm(hγ) +
∞∑
γ=1

Dm(hβ + hγ)

(
m−1∑
α=0

(hγ+1)2m−1−αgα
2α!(2m−1−α)!

+
m−1∑
α=0

p−α (−1− hγ)α
)

+
∞∑
γ=1

Dm(h(N + γ)− hβ)

(
m−1∑
α=0

(hγ+1)2m−1−α(−1)αgα
2α!(2m−1−α)!

+
m−1∑
α=0

p+
α (1 + hγ)α

)]
, β = 0, 1, ..., N.

From here, using (4.7) and formula (4.5), taking into account (6.1) and (6.2), after some calculations

we arrive at the expressions of the coefficients C[β], β = 0, 1, ..., N which are given in the assertion of

the theorem. Theorem 6.1 is proved. 2
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1. Introduction

In this paper, we study a time-fractional diffusion-wave equation obtained by replacing the second-
order time derivative in a classical wave equation with a fractional derivative of order ρ ∈ (1, 2).
It is worth noting that this equation is rather specific in the following sense: for the subdiffusion
equation, most properties of the solution resemble those of the classical diffusion equation. However,
the solution of the diffusion-wave equation with a fractional time derivative exhibits characteristics
of both the diffusion and wave equations. In a certain sense, it can be said that the time-fractional
diffusion-wave equation interpolates between these two classical models the diffusion equation and the
wave equation (see [1], [23]).

The objective of this paper is to investigate a class of non-local problems involving four parameters,
α1, α2, β1, β2 (α2

1 +α2
2 6= 0, β2

1 +β2
2 6= 0), for the time-fractional diffusion-wave equation, and to identify

conditions under which these problems are well-posed. Additionally, in cases where the problem is
ill-posed, we aim to find supplementary conditions that guarantee the existence of a solution (note
that such a solution may not be unique), and to determine the explicit form of all possible solutions.

To achieve this goal, we employ the Fourier method, which requires that the elliptic part of the
equation admits a complete orthonormal system of eigenfunctions. To address equations with varying
elliptic parts, we formulate the problem in an abstract form within a separable Hilbert space H
equipped with an inner product (·, ·) and norm ‖ · ‖. Let A : H → H be an unbounded, positive, self-
adjoint operator with domain D(A). Suppose A has a complete orthonormal system of eigenfunctions
{Vk} in H and a countable set of positive eigenvalues {λk}, arranged in non-decreasing order:

0 < λ1 ≤ λ2 ≤ · · · → +∞.

Let C((a, b);H) denote the set of continuous functions H with value h(t) defined in (a, b). For
functions h : R+ → H, the fractional analogues of integrals and derivatives are defined in the same
manner as for scalar functions (see, for example, [20]). Recall that the fractional Caputo derivative of
order ρ > 0 for a function h(t) is defined as (see, e.g., [21]):

Dρ
t h(t) =

1

Γ(n− ρ)

∫ t

0

h(n)(ξ)

(t− ξ)ρ+1−n dξ, t > 0, n = [ρ] + 1,

provided that the right-hand side exists. As usual, [ρ] denotes the integer part of ρ, and Γ(σ) is the
Euler gamma function. Note that when ρ is an integer, the fractional derivative coincides with the
classical derivative: Dρ

t h(t) = dρ

dtρ
h(t).
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Let ρ ∈ (1, 2) be a fixed number. Consider the following class of non-local boundary value problems
involving real parameters: α1, α2, β1, β2 (α2

1 + α2
2 6= 0, β2

1 + β2
2 6= 0) :

Dρ
t u(t) +Au(t) = f, 0 < t ≤ T ;

α1u(0) + α2u(ξ) = ϕ, 0 < ξ ≤ T ;

β1u
′(0) + β2u

′(ξ) = ψ,

(1.1)

where f, ϕ, ψ ∈ H are prescribed elements of H, and ξ ∈ (0, T ) is a fixed number. These problems are
referred to as forward problems.

Definition 1.1. A function u(t), u′(t) ∈ C([0, T ];H) such that Dρ
t u(t), Au(t) ∈ C((0, T ];H) and

satisfying all conditions of problem (1.1) is called a solution to the non-local problem (1.1).

Non-local problems for various differential equations, especially the periodic case α1 = β1 =
α2 = β2 = 1 and ϕ = ψ = 0, due to their importance for applications, have been consid-
ered by many specialists (see, for example, fundamental monograph [19], Chapter 8, and papers
[1],[3],[5],[7],[11],[12],[13],[17],[22]).

In the paper [5] a similar to (1.1) class of non-local problem{
Dρ
t u(t) +Au(t) = f(t), 0 < ρ < 1, 0 < t ≤ T ;

u(ξ) = αu(0) + ϕ, 0 < ξ ≤ T, (1.2)

was considered for subdiffusion equations. The authors determined the values of the parameter α that
ensure the well-posedness of the problem. For the remaining parameters α, it were found conditions
for the orthogonality of f and ϕ to some eigenfunctions of the operator A, under which the solution of
the problem exists (but there is no uniqueness). It was also considered inverse problems to determine
the right-hand side of the equation and function ϕ in the non-local condition. Also, in the work
[9], inverse problems were studied to determine the right-hand side of a fractional Schrödinger-type
equation. Moreover, in [10], the authors have studied an inverse problem for systems of fractional
pseudo-differential equations. We also note works [1] and [7], where similar forward and inverse
problems are studied for the Rayleigh-Stokes equation ut(t) + (1 + γ∂ρt )Au(t) = f(t), where γ > 0 and
∂ρt is the Riemann-Liouville fractional derivative. Note that if α = 0 in problem (1.2), then we get a
well-known ill-posed backward problem, which was studied in detail in works [2],[15], [24] and [25].

2. Preliminaries

In this section, we introduce the Hilbert spaces of ”smooth” functions associated with fractional
powers of the operator A, and recall several important properties of the Mittag–Leffler functions,
which will be used in the subsequent analysis.

For any real number τ , the fractional power of the operator A is defined by the formula

Aτh =
∞∑
k=1

λτkhkVk,

where hk = (h, Vk) are the Fourier coefficients of a function h ∈ H. The domain of Aτ is given by

D(Aτ ) =

{
h ∈ H :

∞∑
k=1

λ2τ
k |hk|2 <∞

}
.

If we introduce the inner product for elements h, g ∈ D(Aτ ) as

(h, g)τ =
∞∑
k=1

λ2τ
k hkgk = (Aτh,Aτg),

then D(Aτ ) becomes a Hilbert space with respect to this inner product. The corresponding norm is
denoted by ‖h‖τ =

√
(h, h)τ .
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Let ρ ∈ (1, 2) be a fixed number. The two-parameter Mittag–Leffler function is defined as (see, e.g.,
[21], p. 12):

Eρ,µ(z) =
∞∑
n=0

zn

Γ(ρn+ µ)
,

where µ is an arbitrary complex number. In the special case µ = 1, this reduces to the classical
Mittag–Leffler function: Eρ(z) = Eρ,1(z).

We will need the following properties of the Mittag–Leffler functions (see [16], p. 57):

Eρ,µ(z) =
1

Γ(µ)
+ zEρ,µ+ρ(z),

and the estimate (see, e.g., [14], p. 136)

|Eρ,µ(−t)| ≤ c1

1 + t
, (2.1)

which essentially follows from the following asymptotic expansion (see, e.g., [14], p. 134):

Eρ,µ(−t) = −
n∑
k=1

(−t)−k

Γ(µ− kρ)
+O

(
t−n−1

)
. (2.2)

Lemma 2.1 (see [16]). Let λ > 0. Then, for all t > 0, the following identities hold:

d

dt
(Eρ,1(−λtρ)) = −λtρ−1Eρ,ρ(−λtρ),

d

dt
(Eρ,2(−λtρ)) = −λtρ−1 [Eρ,ρ+1(−λtρ)− Eρ,ρ+2(−λtρ)] .

Lemma 2.2 (see [6]). Let 1 < ρ < 2 and t ≥ 0. Then the following estimates hold:

|Eρ,1(−tρ)| ≤ 1,

|Eρ,ρ(−tρ)| ≤
1

Γ(ρ)
,

|Eρ,2(−tρ)| ≤ 1.

Throughout the following, we denote by C a constant that may vary from line to line.

3. Uniqueness Criterion

Let λk, k ≥ 1, be the eigenvalues of the operator A, and let ξ, α1, α2, β1, β2 (α2
1 +α2

2 6= 0, β2
1 +β2

2 6= 0)
be the constants from the non-local conditions in (1.1). Define, for k ≥ 1,

∆k = α1β1 + (α1β2 + α2β1)Eρ,1(−λkξρ) + α2β2

(
Eρ,1(−λkξρ)

)2
+α2β2λkξ

ρEρ,2(−λkξρ)Eρ,ρ(−λkξρ).

Theorem 3.1. If there exists a solution to problem (1.1), then it is unique if and only if the condition
∆k 6= 0 holds for all k ∈ N.

Proof. Assume ∆k 6= 0 for all k ∈ N and suppose there are two solutions u1(t) and u2(t). Since the
problem is linear, the function u(t) = u1(t)− u2(t) satisfies the homogeneous problem:

Dρ
t u(t) +Au(t) = 0, 0 < t ≤ T ;

α1u(0) + α2u(ξ) = 0, 0 < ξ ≤ T ;

β1u
′(0) + β2u

′(ξ) = 0,

(3.1)
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Let Tk(t) = (u, Vk). Since the operator A is self-adjoint, equation (3.1) yields:

Dρ
t Tk(t) = (Dρ

t u, Vk) = −(Au, Vk) = −λk(u, Vk) = −λkTk(t).

Thus, for Tk(t), k ≥ 1, we obtain the following non-local problem:
Dρ
t Tk(t) + λkTk(t) = 0, 0 < t ≤ T,

α1Tk(0) + α2Tk(ξ) = 0, 0 < ξ ≤ T,
β1T

′
k(0) + β2T

′
k(ξ) = 0

(3.2)

Let ak = Tk(0) and bk = T ′k(0). The solution of the corresponding Cauchy problem for (3.2) is given
by (see [18], p.230):

Tk(t) = akEρ,1(−λktρ) + bktEρ,2(−λktρ). (3.3)

To find the unknowns ak and bk, we substitute into the non-local conditions from (3.2), obtaining
the system (see Lemma 2.1):{

(α1 + α2Eρ,1(−λkξρ)) ak + α2ξEρ,2(−λkξρ)bk = 0,

β2(−λk)ξρ−1Eρ,ρ(−λkξρ)ak + (β1 + β2Eρ,1(−λkξρ)) bk = 0.
(3.4)

This is a homogeneous linear system in ak and bk. Its determinant is:

∆k = α1β1 + (α1β2 + α2β1)Eρ,1(−λkξρ) + α2β2 (Eρ,1(−λkξρ))2

+α2β2λkξ
ρEρ,2(−λkξρ)Eρ,ρ(−λkξρ).

Since ∆k 6= 0 by assumption, the system (3.4) has only the trivial solution ak = bk = 0. Therefore,
Tk(t) ≡ 0 for all k, and by completeness of {Vk}, we conclude u(t) ≡ 0.

Now suppose problem (3.1) has a unique solution and assume the contrary, i.e., ∆k = 0 for some k0

and some values of ξ, α1, α2, β1, β2. Then the system (3.4) becomes linearly dependent. Solving the
first equation for ak0

gives:

ak0
= −bk0

α2ξEρ,2(−λk0
ξρ)

α1 + α2Eρ,1(−λk0
ξρ)

,

where bk0
is an arbitrary real number. Then, by (3.3), the function

u(t) = bk0

(
− α2ξEρ,2(−λk0

ξρ)

α1 + α2Eρ,1(−λk0
ξρ)

Eρ,1(−λktρ) + tEρ,2(−λk0
tρ)

)
Vk0

(3.5)

is a solution of Dρ
t u(t) +Au(t) = 0.

We verify that it satisfies the non-local conditions. Direct computation shows:

α1u(0) + α2u(ξ) = 0,

β1u
′(0) + β2u

′(ξ) = 0,

due to the vanishing of ∆k0
and the structure of Mittag-Leffler terms. Thus, (3.5) is a nontrivial

solution to problem (3.1), contradicting uniqueness. This proves the theorem. �

4. On the Auxiliary Problems

To solve problem (1.1), we decompose it into two auxiliary problems:
a Cauchy problem for an inhomogeneous equation:

Dρ
t v(t) +Av(t) = f(t), 0 < t ≤ T ;

v(0) = 0;

v′(0) = 0,

(4.1)



A Four-Parameter non-local Problem for a Fractional Wave Equation 29

and a non-local problem for a homogeneous equation:
Dρ
tw(t) +Aw(t) = 0, 0 < t ≤ T ;

α1w(0) + α2w(ξ) = ϕ∗, 0 < ξ ≤ T ;

β1w
′(0) + β2w

′(ξ) = ψ∗,

(4.2)

where ϕ∗, ψ∗ ∈ H are given elementsand ξ is a fixed point in the interval (0, T ].
The problems (4.1) and (4.2) are special cases of the problem (1.1), and the solution to the problem

(4.1) is defined analogously to Definition 1.1.

Lemma 4.1. Let

ϕ∗ = ϕ− (α1v(0) + α2v(ξ)), ψ∗ = ψ − (β1v
′(0) + β2v

′(ξ)),

and let v(t) and w(t) be the solutions to problems (4.1) and (4.2), respectively. Then the function

u(t) = v(t) + w(t)

is a solution to problem (1.1).

Proof. The proof of this lemma has a very simple form and is carried out as a result of straightforward
calculations (see, for example, [5, 8]). �

Hence, it is sufficient to solve the auxiliary problems to construct the solution to the original
problem.

We begin by considering the Cauchy problem (4.1), for which the following result holds:

Theorem 4.2. (see, [4]) Let f ∈ H. Then the solution of the Cauchy problem (4.1) is unique and
has the form:

v(t) =
∞∑
k=1

fkt
ρEρ,ρ+1

(
− λktρ

)
vk.

where the series converges in H for t ≥ 0.
Moreover, there exists a constant C > 0 such that the following coercive-type inequality holds:

‖Dρ
t v(t)‖2 + ‖v(t)‖21 ≤ C‖f‖2, 0 ≤ t ≤ T.

We now turn to the analysis of problem (4.2). Using the Fourier method, we seek the solution in
the form of a formal series:

w(t) =
∞∑
k=1

Tk(t)Vk. (4.3)

It is straightforward to verify that each Tk(t), for k ≥ 1, satisfies the following non-local problem:
Dρ
t Tk(t) + λkTk(t) = 0, 0 < t ≤ T,

α1Tk(0) + α2Tk(ξ) = ϕ∗k, 0 < ξ ≤ T,
β1T

′
k(0) + β2T

′
k(ξ) = ψ∗k,

where ϕ∗k and ψ∗k are the Fourier coefficients of ϕ∗ and ψ∗, respectively.
The solution and its derivative to this problem can be expressed as (see (3.3)):

Tk(t) = akEρ,1(−λktρ) + bktEρ,2(−λktρ), (4.4)

T ′k(t) = ak(−λk)tρ−1Eρ,ρ(−λktρ) + bkEρ,1(−λktρ),
where the unknown coefficients ak and bk satisfy the following system of equations (see (3.4)):{

(α1 + α2Eρ,1(−λkξρ)) ak + α2ξEρ,2(−λkξρ)bk = ϕ∗k,

β2(−λk)ξρ−1Eρ,ρ(−λkξρ)ak + (β1 + β2Eρ,1(−λkξρ)) bk = ψ∗k.
(4.5)
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The determinant of this system is given by

∆k = α1β1 + (α1β2 + α2β1)Eρ,1(−λkξρ) + α2β2 (Eρ,1(−λkξρ))2

+α2β2λkξ
ρEρ,2(−λkξρ)Eρ,ρ(−λkξρ).

and if ∆k 6= 0 for all k ≥ 1, then the system admits a unique solution given by
ak =

1

∆k

[ϕ∗k (β1 + β2Eρ,1(−λkξρ))− ψ∗kα2ξEρ,2(−λkξρ)] ,

bk =
1

∆k

[
ψ∗k (α1 + α2Eρ,1(−λkξρ))− ϕ∗kβ2(−λk)ξρ−1Eρ,ρ(−λkξρ)

]
.

(4.6)

Remark 4.3. If ∆k = 0 for some k, then the necessary and sufficient condition for the existence of a
solution is that the right-hand sides of equations (4.5) vanish, i.e., ϕ∗k = 0 and ψ∗k = 0. In this case,
the coefficients ak and bk can be chosen arbitrarily.

5. Lower bounds for the denominator of the solution

In this section, we find out in which cases ∆k can vanish, and in those cases when ∆k 6= 0, we
establish lower bounds for

∆k = α1β1 + (α1β2 + α2β1)Eρ,1(−λkξρ) + α2β2

(
Eρ,1(−λkξρ)

)2
+α2β2λkξ

ρEρ,2(−λkξρ)Eρ,ρ(−λkξρ).
where ξ ∈ (0, T ], k ∈ N and ρ ∈ (1, 2),

Lemma 5.1. Let α1β1 6= 0.
If numbers α1, α2, β1, β2 satisfy one of the following conditions for c1 > 0, which is in (2.1),

α2β2

α1β1

≥ 0, 1 > c2
1

α2β2

α1β1

+ c1

∣∣∣∣α2

α1

+
β2

β1

∣∣∣∣ (5.1)

or
α2β2

α1β1

< 0, 1 < −c2
1

α2β2

α1β1

+ c1

∣∣∣∣α2

α1

− β2

β1

∣∣∣∣ (5.2)

then for any k ∈ N we have the estimate

|∆k| ≥ ∆01, ∆01 = |α1β1 − (c2
1|α2β2|+ c1(|α1β2|+ |α2β1|)|.

If numbers α1, α2, β1, β2 don’t satisfy any of the conditions (5.1) and (5.2) for c1 > 0, then there
exists a constant 0 < σ < 1 and a number k0 = k0(σ) such that for all k > k0, the following estimate
holds:

|∆k| ≥ |α1β1|(1− σ). (5.3)

Proof. The idea of proving the lemma is based on the proof of Lemma 3.1 in the paper [13]. Let
conditions (5.1) are satisfied. By virtue of properties of the Mittag-Leffler functions one has

|∆k| = |α1β1 + (α1β2 + α2β1)Eρ,1(−λkξρ) + α2β2

(
Eρ,1(−λkξρ)

)2
+α2β2λkξ

ρEρ,2(−λkξρ)Eρ,ρ(−λkξρ)|

≥ |α1β1|
∣∣∣∣1− ∣∣∣∣α2

α1

+
β2

β1

∣∣∣∣ c1

(1 + λkξρ)
+
α2β2

α1β1

(
Eρ,1(−λkξρ)

)2 − α2β2

α1β1

c2
1

(1 + λkξρ)2
λkξ

ρ

∣∣∣∣
≥ |α1β1 − c1|α1β2 + α2β1| − c2

1|α2β2|+ α2β2

(
Eρ,1(−λkξρ)

)2| ≥ ∆01, k ≥ 1.

Next step, let conditions (5.2) are satisfied.

|∆k| = |α1β1 + (α1β2 + α2β1)Eρ,1(−λkξρ) + α2β2

(
Eρ,1(−λkξρ)

)2
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+α2β2λkξ
ρEρ,2(−λkξρ)Eρ,ρ(−λkξρ)|

≥ |α1β1|
∣∣∣∣1− ∣∣∣∣α2

α1

− β2

β1

∣∣∣∣ c1

(1 + λkξρ)
+
α2β2

α1β1

(
Eρ,1(−λkξρ)

)2
+
α2β2

α1β1

c2
1

(1 + λkξρ)2
λkξ

ρ

∣∣∣∣
≥ |α1β1 − c1|α1β2 − α2β1| − c2

1|α2β2|+ α2β2

(
Eρ,1(−λkξρ)

)2| ≥ ∆01, k ≥ 1.

Easy to see

(1) − c1

1 + λkξρ
≥ −c1,

(2)
(
Eα(−λ2

kξ
ρ)
)2 ≥ 0,

(3) − c2
1

(1 + λkξρ)2
λkξ

ρ ≥ − c2
1λkξ

ρ

1 + λkξρ
≥ −c2

1.

and from this, we obtain

|∆k| ≥ |α1β1 − (c2
1|α2β2|+ c1(|α1β2|+ |α2β1|)|.

Now, suppose that α1β1 6= 0. However, let neither of the conditions (5.1) nor (5.2) be satisfied for
the given values of the parameters. Then, by using the asymptotic estimate (2.2), we have

|∆k| = |α1β1 + (α1β2 + α2β1)Eρ,1(−λkξρ) + α2β2

(
Eρ,1(−λkξρ)

)2
+α2β2λkξ

ρEρ,2(−λkξρ)Eρ,ρ(−λkξρ)|

=

∣∣∣∣α1β1 + (α1β2 + α2β1)

(
− 1

Γ(1− ρ)ξρ
1

λk
+O

(
1

λ2
k

))
+ α2β2

(
− 1

Γ(1− ρ)ξρ
1

λk
+O

(
1

λ2
k

))2

+α2β2λkξ
ρ

(
− 1

Γ(2− ρ)ξρ
1

λk
+O

(
1

λ2
k

))(
− 1

Γ(−ρ)ξ2ρ

1

λ2
k

+O

(
1

λ3
k

))∣∣∣∣
≥ |α1β1|

∣∣∣∣1 + C(α1, β1, α2, β2, ρ, ξ)

(
1

λk
+O

(
1

λ2
k

))∣∣∣∣ .
Now take an arbitrary number 0 < σ < 1. Since λk →∞ as k →∞, there exists a number k0 such

that for all k > k0, ∣∣∣∣C(α1, β1, α2, β2, ρ, ξ)

(
1

λk
+O

(
1

λ2
k

))∣∣∣∣ < σ,

which implies the desired inequality (5.3). �

Lemma 5.2. Let numbers α1, α2, β1, β2 satisfy conditions:

|α1|+ |β1| = 0, α2β2 6= 0, (5.4)

then there exists a number k0 such that for all k > k0, the following estimate holds:

|∆k| ≥
C

λ2
k

(5.5)

Proof. Let condition (5.4) be satisfied. Then we have α2β2 6= 0, and the parameters α1, β1 will be in
the following case:

α1 = 0, β1 = 0.

In this case, according to the asymptotic estimate (2.2),

|∆k| = |α2β2

(
Eρ,1(−λkξρ)

)2
+ α2β2λkξ

ρEρ,2(−λkξρ)Eρ,ρ(−λkξρ)|

=

∣∣∣∣α2β2

(
− 1

Γ(1− ρ)ξρ
1

λk
+O

(
1

λ2
k

))2
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+α2β2λkξ
ρ

(
− 1

Γ(2− ρ)ξρ
1

λk
+O

(
1

λ2
k

))(
− 1

Γ(−ρ)ξ2ρ

1

λ2
k

+O

(
1

λ3
k

))∣∣∣∣
≥ |α2β2|

∣∣∣∣C(ρ, ξ)

(
1

λ2
k

+O

(
1

λ3
k

))∣∣∣∣ ≥ C

λ2
k

.

�

Lemma 5.3. Let numbers α1, α2, β1, β2 satisfy conditions:

α1β1 = 0, |α1|+ |β1| 6= 0, α2β2 6= 0, (5.6)

or
α1β1 = 0, α2β2 = 0, |α1β2|+ |α2β1| 6= 0 (5.7)

then there exists a number k0 such that for all k > k0, the following estimate holds:

|∆k| ≥
C

λk
(5.8)

Proof. Let condition (5.6) be satisfied. Then we have α2β2 6= 0, and the parameters α1, β1 fall into
one of the following cases:

a) Let α1 = 0, β1 6= 0. In this case, according to the asymptotic estimate (2.2),

|∆k| = |α2β1Eρ,1(−λkξρ) + α2β2

(
Eρ,1(−λkξρ)

)2
+ α2β2λkξ

ρEρ,2(−λkξρ)Eρ,ρ(−λkξρ)|

=

∣∣∣∣α2β1

(
− 1

Γ(1− ρ)ξρ
1

λk
+O

(
1

λ2
k

))
+ α2β2

(
− 1

Γ(1− ρ)ξρ
1

λk
+O

(
1

λ2
k

))2

+α2β2λkξ
ρ

(
− 1

Γ(2− ρ)ξρ
1

λk
+O

(
1

λ2
k

))(
− 1

Γ(−ρ)ξ2ρ

1

λ2
k

+O

(
1

λ3
k

))∣∣∣∣
≥
∣∣∣∣C(β1, α2, β2, ρ, ξ)

(
1

λk
+O

(
1

λ2
k

))∣∣∣∣ ≥ C

λk

b) Let now, α1 6= 0, β1 = 0. In this case, again according to the asymptotic estimate (2.2),

|∆k| = |α1β2Eρ,1(−λkξρ) + α2β2

(
Eρ,1(−λkξρ)

)2
+ α2β2λkξ

ρEρ,2(−λkξρ)Eρ,ρ(−λkξρ)|

=

∣∣∣∣α1β2

(
− 1

Γ(1− ρ)ξρ
1

λk
+O

(
1

λ2
k

))
+ α2β2

(
− 1

Γ(1− ρ)ξρ
1

λk
+O

(
1

λ2
k

))2

+α2β2λkξ
ρ

(
− 1

Γ(2− ρ)ξρ
1

λk
+O

(
1

λ2
k

))(
− 1

Γ(−ρ)ξ2ρ

1

λ2
k

+O

(
1

λ3
k

))∣∣∣∣
≥
∣∣∣∣C(α1, α2, β2, ρ, ξ)

(
1

λk
+O

(
1

λ2
k

))∣∣∣∣∆k ≥
C

λk

Let condition (5.7) be satisfied. Then

|∆k| = |cEρ,1(−λkξρ)| =
∣∣∣∣− 1

Γ(1− ρ)ξρ
1

λk
+O

(
1

λ2
k

)∣∣∣∣ ≥ C

λk

holds for the large k. �

The above estimates (5.3),(5.5),(5.8) show that ∆k is bounded from below for sufficiently large
values of k. However, in some cases, it may happen that ∆k = 0 for finitely many values of k. For
example, suppose that α1β1 6= 0. However, let neither of the conditions (5.1) nor (5.2) be satisfied
for the given values of the parameters. In this case, ∆k may vanish for certain indices k. Hence, we
introduce the set

K0 = {k ∈ N : ∆k = 0}.
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Lemma 5.4. The set K0 is either empty or contains only finitely many elements.

Proof. From the proof of Lemma 5.1, it follows that if there exists an index k ∈ K0, then necessarily
k ≤ k0. Therefore, K0 is a finite set. Moreover, as mentioned in Section 1, the sequence {λk} consists
of discrete values. Hence, ∆k can vanish only at isolated indices, and it is possible that no such index
exists. In this case, the set K0 is empty. This completes the proof of Lemma 5.4. �

6. The results for the problem (4.2)

We are now ready to study the problem (4.2). Assume that ∆k 6= 0 for all k ≥ 1, substituting the
coefficients from (4.6) into (4.4), we obtain

Tk(t) = akEρ,1(−λktρ) + bktEρ,2(−λktρ)

=
ϕ∗k
∆k

((
β1 + β2Eρ,1(−λkξρ)

)
Eρ,1(−λktρ) + β2λkξ

ρ−1Eρ,ρ(−λkξρ)tEρ,2(−λktρ)
)

+
ψ∗k
∆k

(
−α2ξEρ,2(−λkξρ)Eρ,1(−λktρ) +

(
α1 + α2Eρ,1(−λkξρ)

)
tEρ,2(−λktρ)

)
.

Then the formal solution of the problem (4.2) takes the form (see (4.3))

w(t) = (6.1)

=
∞∑
k=1

[
ϕ∗k
∆k

((
β1 + β2Eρ,1(−λkξρ)

)
Eρ,1(−λktρ) + β2λkξ

ρ−1Eρ,ρ(−λkξρ)tEρ,2(−λktρ)
)

+
ψ∗k
∆k

(
−α2ξEρ,2(−λkξρ)Eρ,1(−λktρ) +

(
α1 + α2Eρ,1(−λkξρ)

)
tEρ,2(−λktρ)

)]
Vk.

Next, using the estimates of the denominator ∆k (see Section 6), we investigate the well-posedness
of problem (4.2) for various values of the parameters α1, α2, β1, β2.

We now relax the requirement of uniqueness of the solution and are only interested in its existence.
If numbers α1, α2, β1, β2 do not satisfy any of the conditions (5.1) and (5.2), then the set

K0 = {k ∈ N : ∆k = 0}

is non-empty. As a result, for k ∈ K0, in order for the function defined in (6.1) to be meaningful, it is
necessary to impose the following orthogonality conditions:

ϕ∗k = (ϕ∗, Vk) = 0, ψ∗k = (ψ∗, Vk) = 0, k ∈ K0. (6.2)

If conditions (6.2) are satisfied, then for all k ∈ K0, there exist solutions to equation (4.2) that are
similar to the solution (3.5) of the homogeneous problem (3.1). Therefore, if K0 is non-empty, the
formal solution of problem (4.2) can be written as

w(t) =
∑
k∈K0

bk

[
− α2ξEρ,2(−λkξρ)
α1 + α2Eρ,1(−λkξρ)

Eρ,1(−λktρ) + tEρ,2(−λktρ)
]
Vk (6.3)

+
∑
k/∈K0

[
ϕ∗k
∆k

((
β1 + β2Eρ,1(−λkξρ)

)
Eρ,1(−λktρ) + β2λkξ

ρ−1Eρ,ρ(−λkξρ)tEρ,2(−λktρ)
)

+
ψ∗k
∆k

(
−α2ξEρ,2(−λkξρ)Eρ,1(−λktρ) +

(
α1 + α2Eρ,1(−λkξρ)

)
tEρ,2(−λktρ)

)]
Vk.

where bk are arbitrary constants. Hence, in this case, the solution is not unique. However, if K0 is
empty, then the solution is unique.
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Theorem 6.1. Let ϕ∗, ψ∗ ∈ H, α1β1 6= 0 and one of the following conditions hold for c1 > 0, which
in (2.1)

(1a) α2β2

α1β1
≥ 0, 1 > c2

1
α2β2

α1β1
+ c1

∣∣∣α2

α1
+ β2

β1

∣∣∣;
(1b) α2β2

α1β1
< 0, 1 < −c2

1
α2β2

α1β1
+ c1

∣∣∣α2

α1
− β2

β1

∣∣∣;
Then problem (4.2) has a unique solution, and this solution has the form (6.1).

Moreover, there is a constant C, we also obtain a coercive inequality:

||Dρ
tw(t)||2 + ||w(t)||21 ≤ C(||ϕ∗||2 + ||ψ∗||2), t > 0. (6.4)

Proof. We will show that the function (6.1) satisfies all the conditions of Definition 1.1.
Let Sj(t) denote the j-th partial sum of the series (6.1). Then

ASj(t) =

=
j∑

k=1

[
ϕ∗k
∆k

((
β1 + β2Eρ,1(−λkξρ)

)
Eρ,1(−λktρ) + β2λkξ

ρ−1Eρ,ρ(−λkξρ)tEρ,2(−λktρ)
)

+
ψ∗k
∆k

(
−α2ξEρ,2(−λkξρ)Eρ,1(−λktρ) +

(
α1 + α2Eρ,1(−λkξρ)

)
tEρ,2(−λktρ)

)]
Vk.

By Parsevals identity and applying (2.1), Lemmas 2.2, we get:

‖ASj(t)‖2 ≤ C
j∑

k=k0

1

|∆k|
(
|ϕ∗k|2 + |ψ∗k|2

)
.

According to Lemma 5.1 we have |∆k| ≥ ∆01 for all k. Hence, the following inequalities hold:

‖Aw(t)‖2 ≤ C(‖ϕ∗‖2 + ‖ψ∗‖2), t ≥ 0. (6.5)

Therefore, if ϕ∗, ψ∗ ∈ H, then Aw(t) ∈ C((0, T ], H). Since ∂ρtw(t) = −Aw(t), we conclude that
∂ρtw(t) ∈ C((0, T ], H) and

‖∂ρtw(t)‖2 ≤ C(‖ϕ∗‖2 + ‖ψ∗‖2), t ≥ 0. (6.6)

Combining (6.5) and (6.6) give the desired inequality (6.4)
The uniqueness in this case follows from the condition ∆k 6= 0 for all k ≥ 1, and is proved similarly

to Theorem 3.1. �

Theorem 6.2. Let one of the following conditions hold for parameters α1, α2, β1, β2 and elements
ϕ∗, ψ∗:
(1) ϕ∗, ψ∗ ∈ H and the parameters do not satisfy any of the following conditions for any c1 > 0, which
in (2.1):

(1a) α2β2

α1β1
≥ 0, 1 > c2

1
α2β2

α1β1
+ c1

∣∣∣α2

α1
+ β2

β1

∣∣∣;
(1b) α2β2

α1β1
< 0, 1 < −c2

1
α2β2

α1β1
+ c1

∣∣∣α2

α1
− β2

β1

∣∣∣;
(2) ϕ∗, ψ∗ ∈ D(A) and one of the following conditions hold:

(2a) α1β1 = 0, |α1|+ |β1| 6= 0, α2β2 6= 0,
(2b) α1β1 = 0, α2β2 = 0, |α1β2|+ |α2β1| 6= 0;

(3) ϕ∗, ψ∗ ∈ D(A2) and the following condition hold:
(3a) |α1|+ |β1| = 0, α2β2 6= 0.

If the set K0 is empty, then the problem (4.2) has a unique solution, given by the formula (6.1).
Moreover, there is a constant C, we also obtain the corresponding coercive inequalities for each case:
in case (1) the inequality (6.4)
in case (2)

||Dρ
tw(t)||2 + ||w(t)||21 ≤ C(||ϕ∗||21 + ||ψ∗||21), t > 0. (6.7)
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in case (3)

||Dρ
tw(t)||2 + ||w(t)||21 ≤ C(||ϕ∗||22 + ||ψ∗||22), t > 0. (6.8)

If the set K0 is non-empty and the orthogonality condition (6.2) is satisfied for indices k ∈ K0, then
the problem (4.2) has a solution, given in the form (6.3) with arbitrary coefficients bk.

Proof. Now, suppose K0 = ∅. To prove the theorem, we need to show that the series (6.3) satisfies
all the conditions of Definition 1.1. This follows directly from the above analysis for the Theorem 6.1.
The series (6.3) consists of two parts: the first is a finite sum of smooth functions (as shown in Lemma
5.4), and the second part is handled similarly to the proof for the series (6.1).

In case (1), according to Lemma 5.1 we have |∆k| ≥ 1− σ for all k > k0. Like this, using Lemmas
5.2,5.3, in cases (2),(3) the estimates |∆k| ≥ C

λk
and |∆k| ≥ C

λ2
k

hold for all k > k0 respectively.

Hence, the following inequalities hold:
In case (1) the inequality (6.5)
In case (2)

‖Aw(t)‖2 ≤ C(‖ϕ∗‖21 + ‖ψ∗‖21), t ≥ 0. (6.9)

In case (3)

‖Aw(t)‖2 ≤ C(‖ϕ∗‖22 + ‖ψ∗‖22), t ≥ 0. (6.10)

Therefore, if in case (1) ϕ∗, ψ∗ ∈ H, in case (1) ϕ∗, ψ∗ ∈ D(A), in case (1) ϕ∗, ψ∗ ∈ D(A2), then
Aw(t) ∈ C((0, T ], H). Since ∂ρtw(t) = −Aw(t), we conclude that ∂ρtw(t) ∈ C((0, T ], H) and

In case (1) inequality (6.6)
In case (2)

‖∂ρtw(t)‖2 ≤ C(‖ϕ∗‖21 + ‖ψ∗‖21), t ≥ 0. (6.11)

In case (3)

‖∂ρtw(t)‖2 ≤ C(‖ϕ∗‖22 + ‖ψ∗‖22), t ≥ 0. (6.12)

Combining (6.5),(6.9),(6.10) and (6.6),(6.11),(6.12) give the desired inequalities (6.4),(6.7),(6.8).
The uniqueness in this case follows from the condition ∆k 6= 0 for all k ≥ 1.
Let K0 6= ∅. In this case, we remove the special behavior in a finite number of terms using the

orthogonality conditions (6.2), and apply the previous arguments to the rest of the functional series
(6.3). As a result, the solution to the problem (4.2) exists, but its uniqueness is not guaranteed. �

7. The Results for the Main Problem

We now turn to the study of the main problem (1.1). Let v(t) and w(t) be the solutions to
problems (4.1) and (4.2), respectively. Then, according to Lemma 4.1, the solution of problem (1.1)
can be represented as u(t) = v(t) + w(t). Therefore, if ∆k 6= 0 for all k ≥ 1, the solution to problem
(1.1) has the form

u(t) =
∞∑
k=1

[
ϕk − (α1vk(0) + α2vk(ξ))

∆k

((
β1 + β2Eρ,1(−λkξρ)

)
Eρ,1(−λktρ)

+β2λkξ
ρ−1Eρ,ρ(−λkξρ)tEρ,2(−λktρ)

)
+
ψk − (β1v

′
k(0) + β2v

′
k(ξ))

∆k

(−α2ξEρ,2(−λkξρ)Eρ,1(−λktρ)+(
α1 + α2Eρ,1(−λkξρ)

)
tEρ,2(−λktρ)

)
+ vk(t)

]
Vk. (7.1)

where

vk(t) =

t∫
0

ηρ−1Eρ,ρ(−λkηρ)fk(t− η) dη.

The uniqueness of the solution u(t) follows from the uniqueness of the solutions v(t) and w(t).
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Furthermore, we note that if ∆k 6= 0 for some k then similar reasoning as in problem (4.2) can be
applied to problem (1.1). In this case, the orthogonality conditions (6.2) for the functions ϕ,ψ ∈ H
take the form

ϕ∗k = (ϕ∗, Vk) = (ϕ− (α1v(0) + α2v(ξ)), Vk) = 0,

ψ∗k = (ψ∗, Vk) = (ψ − (β1v
′(0) + β2v

′(ξ)), Vk) = 0, k ∈ K0,

or equivalently,

(ϕ, Vk) = (α1v(0) + α2v(ξ), Vk), (ψ, Vk) = (β1v
′(0) + β2v

′(ξ), Vk), k ∈ K0. (7.2)

Remark 7.1. We emphasize that conditions (7.2) are both necessary and sufficient. However, since
the function v and its derivative are involved, these conditions may be somewhat difficult to verify in
practice. Therefore, we can formulate the following sufficient conditions:{

(ϕ, Vk) = 0, (ψ, Vk) = 0, k ∈ K0,

(f, Vk) = 0, k ∈ K0,
(7.3)

These are easier to check and, when satisfied, imply the necessary and sufficient conditions (7.2).

If the orthogonality conditions (7.3) are satisfied, then by Lemma 4.1, the solution to problem (1.1)
takes the form

u(t) =
∑
k∈K0

bk

[
− α2ξEρ,2(−λkξρ)
α1 + α2Eρ,1(−λkξρ)

Eρ,1(−λktρ) + tEρ,2(−λktρ)
]
Vk

+
∑
k/∈K0

[
ϕk − (α1vk(0) + α2vk(ξ))

∆k

((
β1 + β2Eρ,1(−λkξρ)

)
Eρ,1(−λktρ)

+β2λkξ
ρ−1Eρ,ρ(−λkξρ)tEρ,2(−λktρ)

)
+
ψk − (β1v

′
k(0) + β2v

′
k(ξ))

∆k

(−α2ξEρ,2(−λkξρ)Eρ,1(−λktρ)+

(
α1 + α2Eρ,1(−λkξρ)

)
tEρ,2(−λktρ)

)]
Vk +

∞∑
k=1

vk(t)Vk. (7.4)

Thus, we arrive at the following results for the main problem (1.1):

Theorem 7.2. Let f, ϕ, ψ ∈ H, α1β1 6= 0 and one of the following conditions hold for c1 > 0, which
in (2.1)

(a) α2β2

α1β1
≥ 0, 1 > c2

1
α2β2

α1β1
+ c1

∣∣∣α2

α1
+ β2

β1

∣∣∣;
(b) α2β2

α1β1
< 0, 1 < −c2

1
α2β2

α1β1
+ c1

∣∣∣α2

α1
− β2

β1

∣∣∣;
Then problem (1.1) has a unique solution, and this solution has the form (7.1).

Moreover, there is a constant C, we also obtain a coercive inequality:

||Dρ
t u(t)||2 + ||u(t)||21 ≤ C(||f ||2 + ||ϕ||2 + ||ψ||2), t > 0; (7.5)

Theorem 7.3. Let one of the following conditions hold for parameters α1, α2, β1, β2 and elements
f, ϕ, ψ:
(1) f, ϕ, ψ ∈ H and the parameters do not satisfy any of the following conditions for any c1 > 0,
which in (2.1):

(1a) α2β2

α1β1
≥ 0, 1 > c2

1
α2β2

α1β1
+ c1

∣∣∣α2

α1
+ β2

β1

∣∣∣;
(1b) α2β2

α1β1
< 0, 1 < −c2

1
α2β2

α1β1
+ c1

∣∣∣α2

α1
− β2

β1

∣∣∣;
(2) f, ϕ, ψ ∈ D(A) and one of the following conditions hold:

(2a) α1β1 = 0, |α1|+ |β1| 6= 0, α2β2 6= 0,
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(2b) α1β1 = 0, α2β2 = 0, |α1β2|+ |α2β1| 6= 0;
(3) f, ϕ, ψ ∈ D(A2) and the following condition hold:

(3a) |α1|+ |β1| = 0, α2β2 6= 0.
If the set K0 is empty, then the problem (1.1) has a unique solution, given by the formula (7.1).

Moreover, there is a constant C, we also obtain the corresponding coercive inequalities for each case:
in case (1) the inequality (7.5)
in case (2)

||Dρ
t u(t)||2 + ||u(t)||21 ≤ C(||f ||21 + ||ϕ||21 + ||ψ||21), t > 0;

in case (3)
||Dρ

t u(t)||2 + ||u(t)||21 ≤ C(||f ||22 + ||ϕ||22 + ||ψ||22), t > 0;

If the set K0 is non-empty and the orthogonality condition (7.3) is satisfied for indices k ∈ K0, then
the problem (1.1) has a solution, given in the form (7.4) with arbitrary coefficients bk.
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1. Introduction

The study of vector space valued Lie brackets on affine spaces or Lie affgebras was initiated in [5]
and developed and applied to the investigation of differential geometry or AV-geometry [6, 7]. In
their definition of a Lie affgebra the authors of [5] rely on the existence of a vector space: both the
antisymmetry and the Jacobi identity of a Lie bracket are formulated in this vector space. On the
other hand, a vector space-independent definition of an affine space is available.

A new point of view and extension of Lie affgebras was proposed Tomasz Brzeziński and his col-
laborators in [1, 3, 4]. They gave an intrinsic definition of a Lie affgebra, removes the need for a
specified element entirely and formulates the antisymmetry and Jacobi identity of the Lie bracket
without invoking a neutral element or a vector space. In this approach, a vector space is an artefact
rather than a fundamental ingredient of an affine space in the sense that any point of an affine space
determines a vector space, the tangent space or the vector space fibre at this point.

In [3], various examples and properties of Lie affgebras are given, and it is shown how the affine Lie
bracket reduces to the linear case. Lie affgebra structures on several classes of affine spaces of matrices
are studied in [4]. It is shown that, when retracted to the underlying vector spaces, they correspond
to classical matrix Lie algebras: general and special linear, anti-symmetric, anti-hermitian and special
antihermitian Lie algebras, respectively. In [1], it is shown that any Lie affgebra, that is an algebraic
system consisting of an affine space together with a bi-affine multiplication satisfying affine versions
of the antisymmetry and Jacobi identity, is isomorphic to a Lie algebra together with an element and
a specific generalized derivation. These Lie algebraic data can be taken for the construction of a Lie
affgebra or, conversely, they can be uniquely derived for any Lie algebra fibre of the Lie affgebra. It is
asserted that a homomorphism between Lie affgebras is given by a homomorphism between Lie algebra
fibres and a constant. This allows for the formulation of clear criteria for isomorphisms between Lie
affgebras. Using these assertions, the classification of all Lie affgebras with one-dimensional vector
space fibres, non-abelian two-dimensional Lie algebra fibres and three-dimensional simple Lie algebra
sl2 is given.

In this work, we provide a complete classification of Lie affgebras with three-dimensional non-
nilpotent solvable Lie algebras.

2. Preliminaries

Let X be a set, F be a field and 〈−,−,−〉 : X3 → X ternary operation.

Definition 2.1. [2] The set X with the ternary operation 〈−,−,−〉 : X3 → X is said to be abelian
heap, if for all xi ∈ X, i = 1, . . . , 5,

〈x1, x2, x3〉 = 〈x3, x2, x1〉, 〈x1, x1, x2〉 = x2, 〈〈x1, x2, x3〉, x4, x5〉 = 〈x1, x2, 〈x3, x4, x5〉〉.

A homomorphism of heaps is a function f : X → Y preserving the operations in the sense that,
f(〈x1, x2, x3〉) = 〈f(x1), f(x2), f(x3)〉 for all xi ∈ X.

Definition 2.2. By an F-affine space, we mean algebraic system
(
X, 〈−,−,−〉, (−,−,−)

)
, where

〈−,−,−〉 : X3 → X and (−,−,−) : F×X ×X → X, such that
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a) (X, 〈−,−,−〉) is an abelian heap;

b) For any α ∈ F and a ∈ X, the map (α, a,−) : X → X is a homomorphism of heaps;

c) For a fixed elements a, b ∈ X, the map (−, a, b) : F→ X is a homomorphism of heaps, where
F is the heap with the operation α− β + γ;

d) For all α, β ∈ F and a, b ∈ X, (αβ, a, b) = (α, a, (β, a, b)), (1, a, b) = b, (0, a, b) = a.

e) For all α ∈ F and a, b, c ∈ X, (α, a, b) = 〈(α, c, b), (α, c, a), a〉.
An affine map f : X → Y is a heap homomorphism preserving the actions in the sense that, for all

a, b, c ∈ X and α ∈ F,
f(α, a, b) = (α, f(a), f(b)).

The set of affine maps from X to Y is denoted by Aff(X,Y ).
Let X be an affine space over F. For a fixed element e ∈ X, we define a binary operation + :

X ×X → X and the map F×X → X as follows:

x+ y := 〈x, e, y〉, αa := (α, e, a).

Then the triple (X,+, α) forms a vector space, which is called the tangent space to X or the vector
space fibre of X at the point e. This tangent space is usually denoted by Te(X).

Definition 2.3. [1] An affine space X with a binary operation {−,−} : X ×X → X is called a Lie
affgebra, if the binary operation {−,−} satisfies the following conditions:

a) for all a ∈ X, both {a,−} and {−, a} are affine map;

b) affine antisymmetry, that is, 〈{a, b}, {a, a}, {b, a}〉 = {b, b} for all a, b ∈ X;

c) the affine Jacobi identity, that is, for all a, b, c ∈ X,

〈{a, {b, c}}, {a, {a, a}}, {b, {c, a}}, {b, {b, b}}, {c, {a, b}}〉 = {c, {c, c}}.

The multiplication in a Lie affgebra is often referred to as an affine Lie bracket.

It is proven that any tangent space of a Lie affgebra inherits a natural Lie algebra structure.

Theorem 2.4. [1] Let X be a Lie affgebra with a bracket {−,−}. Then, for all e ∈ X, the tangent
space Te(X) is a Lie algebra with the multiplication

[a, b] = {a, b} − {a, e}+ {e, e} − {e, b}.

Let G be a Lie algebra. A linear map f : G → G is called a generalized derivation in the sense of
Leger and Luks [9], if there exist linear maps f ′, f ′′ such that

[f(a), b] + [a, f ′(b)] = f ′′([a, b]).

In the following theorem, the connection between the Lie affgebras and Lie algebras with the
generalized derivation is established.

Theorem 2.5. [1] Let G be a Lie algebra and f, g ∈ End(G) be such that, for all a, b ∈ G,

f([a, b]) = [f(a), b] + [a, f(b)]− [a, g(b)]. (2.1)

Then, G is a Lie affgebra with the affine space structure

〈a, b, c〉 = a− b+ c, (α, a, b) = (1− α)a+ αb (2.2)

and the affine Lie bracket (for any fixed s ∈ G)

{a, b} = [a, b] + g(a) + f(b− a) + s. (2.3)

We denote this Lie affgebra by X(G; g, f, s).
Furthermore, for all e ∈ G, we have TeX(G; g, f, s) ∼= G.
Conversely, for any Lie affgebra X and any e ∈ X, there exist g, f necessarily satisfying (2.1) and

s ∈ TeX, such that X = X(TeX; g, f, s).
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The criterion for the isomorphism of affgebras X(G; g, f, s) and X(G; g′, f ′, s′) is provided in the
following theorem.

Theorem 2.6. [1] A Lie affgebras X(G; g, f, s) and X(G; g′, f ′, s′) are isomorphic if and only if there
exists a Lie algebra automorphism Ψ : G→ G and an element a ∈ G such that

g′ = ΨgΨ−1, f ′ = Ψ(f − ada)Ψ
−1, s′ = Ψ(s+ a− g(a)), (2.4)

where ada is an inner derivation, such that ada(x) = [a, x].

3. Main result

In this work, we systematically construct all Lie affgebra structures on the three-dimensional com-
plex non-nilpotent solvable Lie algebras. Here, we give the list of three-dimensional complex non-
nilpotent solvable Lie algebras [8]:

r3 : [e1, e2] = e2, [e1, e3] = e2 + e3,

r3(λ) : [e1, e2] = e2, [e1, e3] = λe3, λ ∈ C∗, |λ| ≤ 1,

r2 ⊕ C : [e1, e2] = e2.

3.1. Lie affgebra structures on the algebra r3. First, we present the description of the pair of
linear transformations (f, g), that satisfy condition (2.1).

Proposition 3.1. Any linear transformations f and g of the algebra r3 that satisfy condition (2.1)
have the following form:

f(e1) = β1e1 + β2e2 + β3e3, f(e2) = β4e2, f(e3) = β5e2 + β4e3,

g(e1) = β1e1, g(e2) = β1e2, g(e3) = β1e3.

Proof. The proof follows directly from the definition through a routine verification. �

Applying Theorem 2.6, for any element s ∈ r3, we obtain Lie affgebra structure by the binary
operation

{x, y} = [x, y] + g(x) + f(y − x) + s.

Considering f − ada for a = β5e1 + (β3− β2)e2− β3e3, instead of f , we can easily conclude that Lie
affgebra over r3 is isomorphic to one with

f(e1) = β1e1, f(e2) = β4e2, f(e3) = β4e3,

g(e1) = β1e1, g(e2) = β1e2, g(e3) = β1e3.
(3.1)

Thus, for any elements x = ξ1e1 + ξ2e2 + ξ3e3 and y = η1e1 + η2e2 + η3e3, we obtain an affine Lie
bracket

{x, y} = [x, y] + β1η1e1 +
(
β1ξ2 + β4(η2 − ξ2)

)
e2 +

(
β1ξ3 + β4(η3 − ξ3)

)
e3 + s,

where s = N1e1 + N2e2 + N3e3. Denote the Lie affgebra with this affine Lie bracket by
F (β1, β4, N1, N2, N3).

Proposition 3.2. Two Lie affgebras F (β1, β4, N1, N2, N3) and F (β′1, β
′
4, N

′
1, N

′
2, N

′
3) are isomorphic if

and only if there exist α1, α2, α3 ∈ C, α4 ∈ C∗, such that

β′1 = β1, β′4 = β4, N ′2 = α1(N1 − (β1 − β4)(1− β1))− α2(β4 − β1)(1− β1) + α4N2 + α3N3,
N ′1 = N1, N ′3 = α2(N1 − (β1 − β4)(1− β1)) + α4N3.

Proof. Let f, g and f ′, g′ be linear operators of the form (3.1). Since g = β1 id, it follows from (2.4)
that β′1 = β1. Since any automorphism of the algebra r3 has the form

Ψ(e1) = e1 + α1e2 + α2e3, Ψ(e2) = α4e2, Ψ(e3) = α3e2 + α4e3,
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then, using the formulas

f ′ = Ψ(f − ada)Ψ
−1, s′ = Ψ(s+ a− g(a)),

for any element a = C1e1 + C2e2 + C3e3, we obtainβ
′
1 0 0

0 β′4 0

0 0 β′4

 =

 β1 0 0

α1(β1 − β4 + C1) + α2C1 + α3C3 + α4(C2 + C3) β4 − C1 −C1

α2(β1 − β4 + C1) + α4C3 0 β4 − C1


and

N ′1 = C1(1− β1) +N1,
N ′2 = α1(C1(1− β1) +N1) + α3(C3(1− β1) +N3) + α4(C2(1− β1) +N2),
N ′3 = α2(C1(1− β1) +N1) + α4(C3(1− β1) +N3).

Choosing

C1 = 0, C3 =
α2(β4 − β1)

α4

, C2 =
α1(β4 − β1)− (α3 + α4)C3

α4

,

yields the required result, thereby completing the proof of the proposition. �

Theorem 3.3. Any Lie affgebra structure on the algebra r3 is isomorphic to one of the following
pairwise non-isomorphic Lie affgebras:

F1(β1, β4, N1, 0, 0), F2(β1, β4, (β1 − β4)(1− β1), 0, 1),

F3(β1, β1, 0, 1, 0), F4(1, β4, 0, 1, 0), β4 6= 1.

Proof. Using Proposition 3.2, we consider the following cases.

• Let N1 6= (β1 − β4)(1− β1), then taking

α1 =
α3N3 + α4N2 − α2(β4 − β1)(1− β1)

(β1 − β4)(1− β1)−N1

, α2 =
α4N3

(β1 − β4)(1− β1)−N1

,

we get N ′2 = 0, N ′3 = 0. Hence, the corresponding Lie affgebra is F1(β1, β4, N1, 0, 0) with
N1 6= (β1 − β4)(1− β1).

• Let N1 = (β1 − β4)(1− β1), then N ′2 = α2N1 + α4N2 + α3N3 and N ′3 = α4N3.

– Let N3 6= 0, then taking α4 = 1
N3
, α3 = −α2N1+α4N2

N3
, we obtain N ′3 = 1, N ′2 = 0. Thus,

we get the Lie affgebra F2(β1, β4, (β1 − β4)(1− β1), 0, 1).

– Let N3 = 0, then N ′2 = α2N1 + α4N2.

∗ If N1 6= 0, then β1 6= β4 and β1 6= 1. Taking α4 = −α2N1

N2
, we get N ′2 = 0 and obtain

the Lie affgebra F1(β1, β4, N1, 0, 0) with N1 = (β1 − β4)(1− β1) 6= 0.

∗ If N1 = 0, then N ′2 = α4N2, and β1 = β4 or β1 = 1.

· If N2 = 0, then we get the Lie affgebras F1(β1, β1, 0, 0, 0) and F1(1, β4, 0, 0, 0).

· If N2 6= 0, then taking α4 = 1
N2
, we have N ′2 = 1 and obtain the Lie affgebras

F3(β1, β1, 0, 1, 0) and F4(1, β4, 0, 1, 0).

�
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3.2. Lie affgebra structures on the algebra r3(λ). In the following proposition, we present the
description of the pair of linear transformations (f, g), for the algebra r3(λ), that satisfy condition
(2.1).

Proposition 3.4. Any linear transformations f and g of the algebra r3(λ) that satisfy condition (2.1)
have the following form:

λ 6= 1 : f(e1) = β1e1 + β2e2 + β3e3, f(e2) = β4e2, f(e3) = β5e3,

g(e1) = β1e1, g(e2) = β1e2, g(e3) = β1e3.

λ = 1 : f(e1) = β1e1 + β2e2 + β3e3, f(e2) = β4e2 + β6e3, f(e3) = β7e2 + β5e3,

g(e1) = β1e1, g(e2) = β1e2, g(e3) = β1e3.

Proof. The proof of the proposition follows directly from the straightforward verification. �

It is not difficult to get that, any automorphism of the algebra r3(λ) has the form

λ 6= 1 : Ψ(e1) = e1 + α1e2 + α2e3, Ψ(e2) = α3e2, Ψ(e3) = α4e3.

λ = 1 : Ψ(e1) = e1 + α1e2 + α2e3, Ψ(e2) = α3e2 + α5e3, Ψ(e3) = α4e3 + α6e2.

Case λ 6= 1. Considering f − ada for a = β4e1 − β2e2 − β3

λ
e3, instead of f , we can easily conclude

that Lie affgebra over r3(1) is isomorphic to one with

f(e1) = β1e1, f(e2) = 0, f(e3) = β5e3,

g(e1) = β1e1, g(e2) = β1e2, g(e3) = β1e3.
(3.2)

Thus, for any elements x = ξ1e1 + ξ2e2 + ξ3e3 and y = η1e1 + η2e2 + η3e3, we obtain an affine Lie
bracket

{x, y} = [x, y] + β1η1e1 + β1ξ2e2 + (β1ξ3 + β5η3 − β5ξ3)e3 + s,

where s = N1e1 +N2e2 +N3e3. Denote the Lie affgebra on the algebra r3(λ) with this affine Lie bracket
by H(β1, β5, N1, N2, N3).

Proposition 3.5. Two Lie affgebras H(β1, β5, N1, N2, N3) and H(β′1, β
′
5, N

′
1, N

′
2, N

′
3) are isomorphic

if and only if there exist α1, α2 ∈ C, α3, α4 ∈ C∗, such that

β′1 = β1, β′5 = β5, N ′2 = α3N2 + α1

(
N1 − β1(1− β1)

)
,

N ′1 = N1, N ′3 = α4N3 + α2

(
N1 − (β1−β5)(1−β1)

λ

)
.

Proof. The proof is straightforward and follows similarly to the proof of Proposition 3.2. �

Proposition 3.6. Any Lie affgebra structure on the algebra r3(λ) with λ 6= 1, is isomorphic to one
of the following pairwise non-isomorphic Lie affgebras:

H1(β1, β5, N1, 0, 0), H2(β1, β5, β1(1− β1), 1, 0),

H3(β1, β5,
(β1−β5)(1−β1)

λ
, 0, 1), H4(1, β5, 0, 1, 1), β5 6= 1− λ,

H5(β1, β1(1− λ), β1(1− β1), 1, 1).

Proof. Using Proposition 3.5, we consider the following cases.

• N1 6= β1(1− β1) and N1 6= (β1−β5)(1−β1)

λ
, then taking α1 = α3N2

β1(1−β1)−N1
, α2 = α4λN3

(β1−β5)(1−β1)−λN1
,

we get N ′2 = N ′3 = 0 and obtain the Lie affgebra H1(β1, β5, N1, 0, 0).

• N1 = β1(1 − β1) and N1 6= (β1−β5)(1−β1)

λ
, then we have β1 6= 1, β5 6= β1(1 − λ) and taking

α2 = α4λN3

(β1−β5)(1−β1)−λN1
, we obtain N ′3 = 0 and N ′2 = α3N2. Thus, in the case of N2 = 0, we

obtain the Lie affgebra H1 with N1 = β1(1 − β1). In the case of N2 6= 0, we can get N ′2 = 1
and obtain the Lie affgebra H2(β1, β5, β1(1− β1), 1, 0).
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• N1 6= β1(1 − β1) and N1 = (β1−β5)(1−β1)

λ
, then taking α1 = α3N2

β1(1−β1)−N1
, we obtain N ′2 = 0 and

N ′3 = α4N3. Thus, in the case of N3 = 0, we obtain the affgebra H2 with N1 = (β1−β5)(1−β1)

λ
. In

the case of N3 6= 0, we can suppose N ′3 = 1 and obtain the affgebra H3(β1, β5,
(β1−β5)(1−β1)

λ
, 0, 1).

• N1 = β1(1−β1) and N1 = (β1−β5)(1−β1)

λ
. Then we have β1 = 1 or β5 = β1(1−λ) and N ′2 = α3N2,

N ′3 = α4N3. If N2N3 = 0, then we obtain one of the affgebras from H1, H2, H3. In the case
of N2N3 6= 0, we can suppose N ′2 = N ′3 = 1 and obtain the affgebras H4(1, β5, 0, 1, 1) and
H5(β1, β1(1− λ), β1(1− β1), 1, 1).

�

Case λ = 1. Considering f − ada for a = µe1 − β2e2 − β3e3, instead of f , we can easily conclude
that Lie affgebra over r3(λ) is isomorphic to one with

f(e1) = β1e1, f(e2) = (β4 − µ)e2 + β6e3, f(e3) = β7e2 + (β5 − µ)e3,

g(e1) = β1e1, g(e2) = β1e2, g(e3) = β1e3.

By selecting µ as one of the eigenvalues of the matrix

(
β4 β6

β7 β5

)
, without loss of generality we can

assume that the matrix has a zero eigenvalue.
From the formulas f ′ = Ψ(f − ada)Ψ

−1, and the general form of the automorphism Ψ, it follows
that the matrix of the operator f ′ can be reduced to one of the following Jordan forms:β1 0 0

0 0 0
0 0 β5

 ,

β1 0 0
0 0 β6

0 0 0

 , β6 6= 0.

If the Jordan form of the matrix corresponds to the first case, then the situation is analogous to
that of λ 6= 1 and we obtain the affgebras H1, H2, H3, H4 and H5 with λ = 1.

If the Jordan form of the matrix corresponds to the second case, then we get

f(e1) = β1e1, f(e2) = β6e3, f(e3) = 0,

g(e1) = β1e1, g(e2) = β1e2, g(e3) = β1e3,
(3.3)

and for any elements x = ξ1e1 + ξ2e2 + ξ3e3, y = η1e1 + η2e2 + η3e3, we obtain an affine Lie bracket

{x, y} = [x, y] + β1η1e1 + β1ξ2e2 + (β1ξ3 + β6η2 − β6ξ2)e3 + s,

where s = N1e1 +N2e2 +N3e3. Denote the Lie affgebra on the algebra r3(λ) with this affine Lie bracket
by K(β1, β6, N1, N2, N3).

Proposition 3.7. Two Lie affgebras K(β1, β6, N1, N2, N3) and K(β′1, β
′
6, N

′
1, N

′
2, N

′
3) are isomorphic

if and only if there exist α1, α2 ∈ C, α3, α4 ∈ C∗, such that

β′1 = β1, β′6 = α4β6

α3
, N ′2 = α3N2 + α1

(
N1 − β1(1− β1)

)
,

N ′1 = N1, N ′3 = α4N3 + α2

(
N1 − β1(1− β1)

)
+ α5N2 + α1α4β6(1−β1)

α3
.

Proof. The proof is straightforward and follows similarly to the proof of Proposition 3.2. �

Proposition 3.8. Any Lie affgebra from the class K(β1, β6, N1, N2, N3) is isomorphic to one of the
following pairwise non-isomorphic Lie affgebras:

K1(β1, 1, N1, 0, 0), K2(β1, 1, β1(1− β1), 1, 0), K3(1, 1, 0, 0, 1).

Proof. By taking α3 = α4β6, in Proposition 3.7, without loss of generality we may assume β6 = 1 and
α3 = α4. We now consider the following cases:
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• N1 6= β1(1− β1), then taking α1 = α3N2

β1(1−β1)−N1
, α2 = α4N3+α5N2+α1(1−β1)

β1(1−β1)−N1
, we get N ′2 = N ′3 = 0

and obtain the affgebra K1(β1, 1, N1, 0, 0).

• N1 = β1(1− β1), then N ′2 = α4N2, N
′
3 = α4N3 + α5N2 + α1(1− β1).

– If N2 6= 0, then choosing α4 = 1
N2
, α5 = −α4N3+α1(1−β1)

N2
, we have N ′2 = 1, N ′3 = 0 and

obtain the affgebra K2(β1, 1, β1(1− β1), 1, 0).

– If N2 = 0, then N ′3 = α4N3 +α1(1−β1). If β1 6= 1 or N3 = 0, then by choosing appropriate
values for α1 and α4, we have N ′3 = 0 and obtain the affgebra K1 with N1 = β1(1− β1).
If β1 = 1 and N3 6= 0, then taking α4 = 1

N3
, we have N ′3 = 1 and obtain the affgebra

K3(1, 1, 0, 0, 1).

�

Summarizing the results for the cases λ 6= 1 and λ = 1, we obtain the following theorem.

Theorem 3.9. Any Lie affgebra structure on the algebra r3(λ) is isomorphic to one of the following
pairwise non-isomorphic Lie affgebras:

H1(β1, β5, N1, 0, 0), H2(β1, β5, β1(1− β1), 1, 0),

H3(β1, β5,
(β1−β5)(1−β1)

λ
, 0, 1), H4(1, β5, 0, 1, 1), β5 6= 1− λ,

H5(β1, β1(1− λ), β1(1− β1), 1, 1),

and
K1(β1, 1, N1, 0, 0), K2(β1, 1, β1(1− β1), 1, 0), K3(1, 1, 0, 0, 1).

Note that in the case of λ = 1, we have H2(β1, 0, β1(1− β1), 1, 0) ' H3(β1, 0, β1(1− β1), 0, 1).

3.3. Lie affgebra structures on the algebra r2 ⊕ C. First, we present the description of the pair
of linear transformations (f, g), that satisfy condition (2.1).

Proposition 3.10. Any linear transformations f and g of the algebra r2 ⊕ C, that satisfy condition
(2.1) have the following form:

f(e1) = β1e1 + β2e2 + β3e3, f(e2) = β4e2, f(e3) = β5e3,

g(e1) = β1e1 + γ1e3, g(e2) = β1e2 + γ2e3, g(e3) = γ3e3.

Proof. The proof of the proposition follows directly from the straightforward verification. �

For any element s = N1e1 +N2e2 +N3e3 ∈ r2⊕C, a Lie affgebra structure is defined by the binary
operation

{x, y} = [x, y] + g(x) + f(y − x) + s,

which is denoted by X(r2 ⊕ C; g, f, s).
Since any automorphism of the algebra r2 ⊕ C has the form

Ψ(e1) = e1 + α1e2 + α2e3, Ψ(e2) = α3e2, Ψ(e1) = α4e3,

we obtain the following proposition.

Proposition 3.11. Two Lie affgebras X(r2 ⊕C; g, f, s) and Xr2 ⊕C; g′, f ′, s′) are isomorphic if and
only if there exist α1, α2, C1, C2, C3 ∈ C and α3, α4 ∈ C∗, such that

β′1 = β1, β′2 = α1(β1 + β4 − C1) + α3(β2 + C2), β′3 = α2(β1 − β5) + α4β3,
β′5 = β5, β′4 = β4 − C1,
γ′3 = γ3, γ′1 = α2(β1 − γ3) + α4(γ1 − α1γ2

α3
), γ′2 = α4γ2

α3
,

and
N ′1 = C1(1− β1) +N1,
N ′2 = α1(C1(1− β1) +N1) + α3(C2(1− β1) +N2),
N ′3 = α2(C1(1− β1) +N1) + α4(C3(1− γ3) + C1γ1 + C2γ2 +N3).
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Proof. The proof is obtained by straightforward computation using Theorem2.6.
�

Choosing C1 = β4 and C2 = −α3β2+α1β1

α3
in Proposition 3.11, we obtain β′2 = β′4 = 0. Therefore,

without loss of generality, we may assume β2 = β4 = 0, C1 = 0, C2 = −α1β1

α3
. Hence, we derive the

following restrictions:

β′3 = α2(β1 − β5) + α4β3, γ′1 = α2(β1 − γ3) + α4(γ1 − α1γ2

α3
), γ′2 = α4γ2

α3
, (3.4)

and
N ′1 = N1,
N ′2 = α3N2 + α1

(
N1 − β1(1− β1)

)
,

N ′3 = α4N3 + α2N1 + α4

(
C3(1− γ3)− α1β1

α3
γ2

)
.

(3.5)

Hence, Lie affgebra structures on the algebra r2 ⊕ C depend on the parameters
β1, β3, β5, γ1, γ2, γ3, N1, N2, N3. We denote this class of Lie affgebras by

L(β1, β3, β5, γ1, γ2, γ3, N1, N2, N3).

Theorem 3.12. Any Lie affgebra structure on the algebra r2⊕C is isomorphic to one of the following
pairwise non-isomorphic Lie affgebras:

L1(β1, 0, β5, 0, 1, γ3, N1, 0, 0), L2(β1, 0, β5, 0, 1, γ3, N1, 1, 0),

L3(β1, 0, β5, 0, 1, 1, N1, N2, 1), L4(β1, 0, β5, 0, 0, γ3, N1, 0, 0),

L5(β1, 0, β5, 1, 0, γ3, N1, 0, 0), L6(β1, 0, β5, γ1, 0, 1, N1, 0, 1),

L7(β1, 0, β5, 0, 0, γ3, β1(1− β1), 1, 0), L8(β1, 0, β5, 1, 0, γ3, β1(1− β1), 1, 0),

L9(β1, 0, β5, γ1, 0, 1, β1(1− β1), 1, 1), L10(β1, 1, β1, 0, 1, γ3, N1, 0, 0),

L11(β1, 1, β1, 0, 1, β1, N1, N2, 0), β1 6= 1, L12(β1, 1, β1, 0, 1, γ3, β1(1− β1), N2, 0), γ3 6= 1,

L13(β1, 1, β1, 0, 1, 1, N1, N2, 0), L14(β1, β3, β1, 0, 1, 1, β1(1− β1), N2, 1),

L15(β1, 1, β1, 0, 0, γ3, N1, 0, 0), L16(β1, β3, β1, 1, 0, β1, N1, 0, 0), β1 6= 1,

L17(β1, β3, β1, 1, 0, 1, N1, 0, 0), L18(β1, β3, β1, 0, 0, 1, 0, 0, 1),

L19(β1, 1, β1, 0, 0, γ3, β1(1− β1), 1, 0), L20(β1, β3, β1, 1, 0, β1, β1(1− β1), 1, 0), β1 6= 1,

L21(β1, β3, β1, 0, 0, 1, β1(1− β1), 0, 1), L22(β1, β3, β1, 0, 0, 1, β1(1− β1), 1, 1),

L23(1, β3, 1, 1, 0, 1, 0, 0, N3), L24(1, β3, 1, 1, 0, 1, 0, 1, N3)

Proof. Consider the following cases.

• Let β1 6= β5 and γ2 6= 0, then taking α2 = α4β3

β5−β1
, α4 = α3

γ2
and α1 = α2(β1 − γ3) + α4γ1, we

obtain β′3 = 0, γ′1 = 0, γ′2 = 1. Thus, we get that N ′2 = α3N2, N
′
3 = α3(C3(1− γ3) +N3).

– Let γ3 6= 1, then taking C3 = N3

γ3−1
, we obtain N ′3 = 0. Hence, we get the Lie affgebras

L1(β1, 0, β5, 0, 1, γ3, N1, 0, 0) and L2(β1, 0, β5, 0, 1, γ3, N1, 1, 0) depending on whether N2 =
0 or not.

– Let γ3 = 1, then we get N ′2 = α3N2, N
′
3 = α3N3.

∗ If N3 6= 0, then taking α3 = 1
N3
, we get N ′3 = 1, and obtain the affgebra

L3(β1, 0, β5, 0, 1, 1, N1, N2, 1).

∗ If N3 = 0, then we obtain the affgebras L1(β1, 0, β5, 0, 1, 1, N1, 0, 0) and
L2(β1, 0, β5, 0, 1, 1, N1, 1, 0) depending on whether N2 = 0 or not.

• Let β1 6= β5 and γ2 = 0, then γ′2 = 0 and taking α2 = α4β3

β5−β1
, we obtain β′3 = 0. Thus, we get

that

γ′1 = α4γ1, N ′2 = α1(N1 − β1(1− β1)) + α3N2, N ′3 = α4(C3(1− γ3) +N3).
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– Let N1 6= β1(1 − β1) and γ3 6= 1, then taking α1 = α3N2

β1(1−β1)−N1
, C3 = N3

γ3−1
, we

obtain N ′2 = 0, N ′3 = 0 and γ′1 = α4γ1. Thus, in this case we get the affge-
bras L4(β1, 0, β5, 0, 0, γ3, N1, 0, 0) and L5(β1, 0, β5, 1, 0, γ3, N1, 0, 0) depending on whether
γ1 = 0 or not.

– Let N1 6= β1(1 − β1) and γ3 = 1, then taking α1 = α3N2

β1(1−β1)−N1
, we obtain N ′2 = 0, and

N ′3 = α4N3, γ
′
1 = α4γ1.

∗ If N3 = 0, then N ′3 = 0, and we get the affgebras L4(β1, 0, β5, 0, 0, 1, N1, 0, 0) and
L5(β1, 0, β5, 1, 0, 1, N1, 0, 0) depending on whether γ1 = 0 or not.

∗ If N3 6= 0, then taking α4 = 1
N3
, we get N ′3 = 1 and obtain the affgebra

L6(β1, 0, β5, γ1, 0, 1, N1, 0, 1).

– Let N1 = β1(1−β1) and γ3 6= 1, then taking C3 = N3

γ3−1
, we obtain N ′3 = 0 and N ′2 = α3N2,

γ′1 = α4γ1.

∗ If N2 = 0, then N ′2 = 0, and we get the affgebras L4(β1, 0, β5, 0, 0, 1, β1(1−β1), 0, 0)
and L5(β1, 0, β5, 1, 0, 1, β1(1− β1), 0, 0) depending on whether γ1 = 0 or not.

∗ If N2 6= 0, then taking α3 = 1
N2
, we get N ′2 = 1 and obtain the affgebras

L7(β1, 0, β5, 0, 0, γ3, β1(1−β1), 1, 0) and L8(β1, 0, β5, 1, 0, γ3, β1(1−β1), 1, 0) depend-
ing on whether γ1 = 0 or not.

– Let N1 = β1(1− β1) and γ3 = 1, then we get N ′2 = α3N2, N
′
3 = α4N3, γ

′
1 = α4γ1.

∗ If N2 = 0, N3 = 0, then N ′2 = 0, N ′3 = 0, and we obtain the affgebras
L4(β1, 0, β5, 0, 0, 1, β1(1−β1), 0, 0) and L5(β1, 0, β5, 1, 0, 1, β1(1−β1), 0, 0) depending
on whether γ1 = 0 or not.

∗ If N2 = 0, N3 6= 0, then N ′2 = 0, and taking α4 = 1
N3
, we get N ′3 = 1. Thus, in this

case we obtain the affgebra L6(β1, 0, β5, γ1, 0, 1, β1(1− β1), 0, 1).

∗ If N2 6= 0, N3 = 0, then N ′3 = 0, and taking α3 = 1
N2
, we get N ′2 = 1.

Thus, in this case, we obtain the affgebras L7(β1, 0, β5, 0, 0, 1, β1(1− β1), 1, 0), and
L8(β1, 0, β5, 1, 0, 1, β1(1− β1), 1, 0) depending on whether γ1 = 0 or not.

∗ If N2 6= 0, N3 6= 0, taking α3 = 1
N2
, α4 = 1

N3
, we get N ′2 = N ′3 = 1. Hence, we get

the affgebra L9(β1, 0, β5, γ1, 0, 1, β1(1− β1), 1, 1).

• Let β1 = β5 and γ2 6= 0, then taking α1 = α4γ1 + α2(β1 − γ3) and α4 = α3

γ2
, we obtain γ′1 = 0,

γ′2 = 1. Thus, without loss of generality, we may assume γ1 = 0, γ2 = 1, then α1 = α2(β1−γ3),
α4 = α3, and we have

β′3 = α3β3, N ′2 = α3N2 + α2(β1 − γ3)(N1 − β1(1− β1)),

N ′3 = α3(C3(1− γ3) +N3) + α2(N1 − β1(γ3 − β1)).

– Let γ3 6= 1 and (β1 − γ3)(N1 − β1(1− β1)) 6= 0, then taking

C3 =
α3N3 + α2(N1 − β1(γ3 − β1))

α3(γ3 − 1)
, α2 =

α3N2

(γ3 − β1)(N1 − β1(1− β1))
,

we obtain N ′2 = 0, N ′3 = 0.

∗ If β3 = 0, then we get the affgebra L1(β1, 0, β1, 0, 1, γ3, N1, 0, 0).

∗ If β3 6= 0, we get the affgebra L10(β1, 1, β1, 0, 1, γ3, N1, 0, 0).

– Let γ3 6= 1 and (β1− γ3)(N1− β1(1− β1)) = 0, then taking C3 = α3N3+α2(N1−β1(γ3−β1)

α3(γ3−1)
, we

obtain N ′3 = 0. Thus, we have β′3 = α3β3, and N ′2 = α3N2.

∗ If β3 = 0, then we get the affgebras L1(β1, 0, β1, 0, 1, γ3, N1, 0, 0) and
L2(β1, 0, β1, 0, 1, γ3, N1, 1, 0) depending on whether N2 = 0 or not.
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∗ If β3 6= 0, then we can suppose β′3 = 1, and obtain the affgebras
L11(β1, 1, β1, 0, 1, β1, N1, N2, 0) and L12(β1, 1, β1, 0, 1, γ3, β1(1− β1), N2, 0).

– Let γ3 = 1 and N1 6= β1(1 − β1), then taking α2 = α3N3

β1(1−β1)−N1
, we have N ′3 = 0 and

obtain β′3 = α3β3, N
′
2 = α3N2.

∗ If β3 = 0, then we get the affgebras L1(β1, 0, β1, 0, 1, 1, N1, 0, 0) and
L2(β1, 0, β1, 0, 1, 1, N1, 1, 0) depending on whether N2 = 0 or not.

∗ If β3 6= 0, then we can suppose β′3 = 1, and obtain the affgebra
L13(β1, 1, β1, 0, 1, 1, N1, N2, 0).

– Let γ3 = 1 and N1 = β1(1− β1), then we get β′3 = α3β3, N
′
2 = α3N2 and N ′3 = α3N3.

∗ If N3 = 0, then we get the affgebras L1, L2 and L13, with β3 = β1, γ3 = 1,
N1 = β1(1− β1).

∗ If N3 6= 0, then we may assume N ′3 = 1 and obtain the affgebra
L14(β1, β3, β1, 0, 1, 1, β1(1− β1), N2, 1).

• Let β1 = β5 and γ2 = 0, then γ′2 = 0. Thus, we get that

β′3 = α4β3, γ′1 = α2(β1 − γ3) + α4γ1,

N ′2 = α3N2 + α1(N1 − β1(1− β1)), N ′3 = α2N1 + α4N3 + α4C3(1− γ3)

– Let N1 6= β1(1−β1) and γ3 6= 1, then taking α1 = α3N2

β1(1−β1)−N1
, C3 = α2N1+α4N3

α4(γ3−1)
, we obtain

N ′2 = 0, N ′3 = 0.

∗ If γ3 6= β1, then taking α2 = α4γ1

γ3−β1
, we get γ′1 = 0 and obtain the affge-

bras L4(β1, 0, β1, 0, 0, γ3, N1, 0, 0) and L15(β1, 1, β1, 0, 0, γ3, N1, 0, 0), depending on
whether β3 = 0 or not.

∗ If γ3 = β1, then in case of γ1 = 0, we obtain the affgebras L4 and L15 with γ3 = β3 =
β1. In the case of γ1 6= 0, we obtain the affgebra L16(β1, β3, β1, 1, 0, β1, N1, 0, 0).

– Let N1 6= β1(1− β1) and γ3 = 1, then taking α1 = α3N2

β1(1−β1)−N1
, we obtain N ′2 = 0.

∗ If N1 6= 0, then taking α2 = −α4N3

N1
, we have N ′3 = 0 and β′3 = α4β3, γ

′
1 = α4γ1.

· If γ1 = 0, then we get the affgebras L4 and L15 with γ3 = 1, β3 = β1.

· If γ1 6= 0, then we may assume γ′1 = 1, and obtain the affgebra
L17(β1, β3, β1, 1, 0, 1, N1, 0, 0).

∗ If N1 = 0, then β1(1− β1) 6= 0. Taking α2 = α4γ1

1−β1
, we have γ′1 = 0 and β′3 = α4β3,

N ′3 = α4N3.

· If N3 = 0, then we get the affgebras L4 and L15 with β3 = β1, N1 = 0.

· N3 6= 0, then we may assume N ′3 = 1, and obtain the affgebra
L18(β1, β3, β1, 0, 0, 1, 0, 0, 1).

– Let N1 = β1(1− β1) and γ3 6= 1, then taking C3 = α2N1+α4N3

α4(γ3−1)
, we obtain N ′3 = 0.

∗ If γ3 6= β1, then taking α2 = α4γ1

γ3−β1
, we may suppose γ′1 = 0.

· If β3 = 0, N2 = 0, then we obtain the affgebra L4 with N1 = β1(1− β1).

· If β3 = 0, N2 6= 0, then we obtain the affgebra L7 with N1 = β1(1− β1).

· If β3 6= 0, N2 = 0, then we obtain the affgebra L15 with N1 = β1(1− β1).

· If β3 6= 0, N2 6= 0, then we obtain the affgebra L19(β1, 1, β1, 0, 0, γ3, β1(1 −
β1), 1, 0).

∗ If γ3 = β1, then we have β′3 = α4β3, γ
′
1 = α4γ1, N

′
2 = α3N2.

· If γ1 = 0, then similarly to the previous case we obtain the affgebras L4, L7,
L15 and L19 with γ3 = β3 = β1 and N1 = β1(1− β1).
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· If γ1 6= 0, then we can suppose γ′1 = 1, and obtain the affgebras
L16(β1, β3, β1, 1, 0, β1, β1(1−β1), 0, 0) and L20(β1, β3, β1, 1, 0, β1, β1(1−β1), 1, 0)
depending on whether N2 = 0 or not.

– Let N1 = β1(1− β1) and γ3 = 1.

∗ Let β1 6= 1, then taking α2 = α4γ1

1−β1
, we get that γ′1 = 0.

· If N3 = 0, then similarly to the previous case, we get the affgebras L4, L7,
L15 and L19 with γ3 = 1, β3 = β1 and N1 = β1(1− β1).

· If N3 6= 0, then we may suppose N ′3 = 1, and obtain the algebras
L21(β1, β3, β1, 0, 0, 1, β1(1− β1), 0, 1) and L22(β1, β3, β1, 0, 0, 1, β1(1− β1), 1, 1)
depending on whether N2 = 0 or not.

∗ Let β1 = 1.

· If γ1 = 0, then we get the affgebras L4, L7, L15, L19, L21 and L22, with
γ3 = β3 = β1 = 1 and N1 = 0.

· If γ1 6= 0, then we may suppose γ′1 = 1, and obtain the affge-
bras L23(1, β3, 1, 1, 0, 1, 0, 0, N3) and L24(1, β3, 1, 1, 0, 1, 0, 1, N3) depending on
whether N2 = 0 or not.

�

References
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Kernel identification problem in a time-fractional wave equation
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Abstract. In this paper, the inverse problem of determining convolution kernel in the time-
fractional wave equation with the Caputo derivative is studied. To express the solution of the Cauchy
problem, the fundamental solution of the corresponding equation is systematically formulated, with
a detailed investigation into the properties of this solution. The fundamental solution contains a
Fox’s function, which is widely used in the theory of diffusion-wave equation. Using the formulas of
asymptotic expansions for the fundamental solution and its derivatives, an estimate for the solution
of the direct problem is obtained. A priori estimate contains the norm of the unknown kernel function
and it was used for studying the inverse problem. The inverse problem is reduced to the equivalent
integral equation, By the fixed point argument in suitable functional classes the local solvability is
proven. The global uniqueness results and also the stability estimate for solution to the inverse problem
are established.

Keywords: Gerasimov-Caputo fractional derivative, Fox’s H-function, Mittag-Leffler function,
integral equation.
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1. Introduction

The determination of the kernel in the fractional derivatives-wave equation is an important step
in understanding the behavior of waves in non-local and memory-dependent media, and it has ap-
plications in various fields such as signal processing, viscoelastic materials, and electromagnetic wave
propagation.

Over the last years Fractional Calculus has provided new and better methods to describe the be-
havior of several systems. Novel applications of fractional partial differential equations in physics,
engineering, signal processing, chaos, viscoelastic materials, electrical circuits, and so forth, were de-
veloped [1, 2, 3, 4, 5]. Tomovski in [6] solved the fractional wave equation with frictional memory kernel
of Mittag-Leffler type via the Liouville-Caputo fractional derivative. The method of separation of vari-
ables and Laplace transform were used to solve the equations. Delic [7] studied the time-fractional
wave equation with Dirac delta distribution and with homogeneous initial-boundary conditions. The
rate of convergence in special discrete energetic Sobolev norms is obtained. In [8], Liu et al.considered
a fractional diffusion-wave equation with damping using the Liouville-Caputo derivative. They derived
the analytical solution for the equation using the method of separation of variables and constructed
an implicit differences method of approximation. Ferreira and Vieira, in [10], studied the multidi-
mensional time-fractional diffusion-wave equation via the Liouville-Caputo derivative. The authors
obtained an integral representation of the fundamental solution of the time-fractional diffusion-wave
operator. In [11], the authors studied the telegraph equation considering the topological generalization
of the elementary circuit used in transmission line modeling in order to include the effects of charge
accumulation along the line. The Laplace transform technique is used in obtaining the analytical
solution of signal propagation along the line. Tomovski and Sandev, in [12], considered the wave
equation for a vibrating string in the presence of a fractional friction with power-law memory kernel.
Exact solutions were obtained in terms of the Mittag-Leffler type functions and a generalized integral
operator containing a four-parameter Mittag-Leffler function in the kernel. Mainardi [13] pointed out
that the fractional wave equation governs the propagation of mechanical diffusive waves in viscoelastic
media. Kochubei [14, 15] applied the semigroup theory in Banach spaces, and Eidelman and Kochubei
[16] constructed the fundamental solution in Rd and proved the maximum principle for the Cauchy
problem. Mainardi [13], [17] solved a fractional diffusion-wave equation using the Laplace transform
in a one-dimensional bounded domain. (see, also [18]). Gejji and Jafari [19] solved a nonhomogeneous
fractional diffusion-wave equation in a one-dimensional bounded domain.
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Inverse problems for classical differential equations of heat and wave conduction have been studied
quite widely. Inverse problems for identification source functions and coefficients of equations by dif-
ferent overdetermination conditions are most often encountered (see, for example, [20, 21]). In these
works authors discussed the unique solvability and stability of solution as well as numerical approach
for solving some problems. The works [22, 23] are devoted to study the memory recovery problems
for hyperbolic integro-differential equations of the second order with convolution type integral term.
The article [24] is concerned with the study of unique solvability of an inverse coefficient problem of
determining the coefficient at the lower term of a fractional diffusion equation. The existence and
uniqueness theorems of solving the inverse problem are obtained. In addition, a numerical algorithm
based on a finite difference scheme is proposed for the exact calculation of the inverse problem of simul-
taneous determination of the time-dependent coefficient in the fractional diffusion equation together
with its solution. In [25], the authors studied an inverse problem of reconstructing the time-dependent
source function for the population model with population density nonlocal boundary conditions and
an integral over-determination measurement. Huntul [26] identified the unknown time-dependent co-
efficient in the third-order equation from nonlocal integral observation. Various statements of inverse
problems on determination of thermal coefficient in one-dimensional heat equation were studied in
[27, 28, 29]. In papers [27, 28], the time-dependent thermal coefficient is determined from the heat
moment. In [30, 31, 32, 33, 34], the unique solvability of the nonlocal direct problems and inverse
source problems for the various fractional diffusion wave equations with Caputo and Riemann-Liouville
integral-differential operators were investigated.

The remainder of this paper is organized as follows. In the next section, Section 2, we present the
mathematical formulations of the direct and inverse problems and an equivalent transformed auxiliary
problem. In Section 3, we give well known definations, assertions and formulas that will be used for
proof of results. Section 4 is devoted to the investigation of the direct problem. In section 5, the
inverse problem is studied. Finally, conclusions are presented in Section 6.

2. Formulation of problem and auxiliary constructions

We consider the time-fractional wave equation with convolution integral(
D(α)
t u

)
(x, t)− uxx(x, t) =

∫ t

0

k(τ)u(x, t− τ)dτ + f(x, t), (x, t) ∈ QT
0 , (2.1)

the solution of which satisfies the initial conditions

u|t=0 = ϕ(x), ut|t=0 = ψ(x), x ∈ R, (2.2)

where 1 < α < 2, D(α)
t is Caputo-Dzhrbashyan fractional derivative, that is(

D(α)
t u

)
(x, t) =

1

Γ(2− α)

∂

∂t

∫ t

0

(t− τ)−α+1u′τ (τ, x)dτ − t−α+1 u
′
t(0, x)

Γ(2− α)
,

and ϕ(x), ψ(x) are given smooth functions, QT
0 := {(x, t) : x ∈ R, 0 < t ≤ T}.

For the given function k(t), t ∈ [0, T ], we will call the problem of finding the function u(x, t),
(x, t) ∈ R× [0, T ] from the equations (2.1) and (2.2) as Cauchy problem.

We pose the inverse problem as follows: find the function k(t), t ≥ 0 in (2.1), if the solution of the
Cauchy problem (2.1),(2.2) satisfies

u|x=0 = g(t), t ∈ [0, T ], (2.3)

where g(t) is a given function.

Definition 2.1. A function u(x, t) is called a classical solution to the Cauchy problem (2.1) and (2.2)
if:

(i) twice continuously differentiable in x for each t > 0;
(ii) for each x ∈ R is continuously differentiable in (x, t) on R× [0, T ], and the fractional integral(

I2−α
0+ u

)
(x, t) =

1

Γ(2− α)

∫ t

0

(t− τ)−α+1uτ (x, τ)dτ
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is continuously differentiable in t for t > 0;
(iii) satisfies the equation (2.1) and initial conditions (2.2).

We proceed to define the functional spaces that will be employed throughout the analysis. Let
Cm,2−α(QT

0 ) be the class of the m times continuously differentiable with respect to x ∈ R variable,
continuous in t and its fractional integral of the order 2 − α is continuously differentiable in t on
[0, T ] functions. Everywhere in this paper, we will denote by Hl(R) the locally Holder continuous and
bounded functions with exponent l ∈ (0, 1]. The space Hm+l(R) (m is nonnegative integer) and norms
| · |l, | · |m+l are defined from ([36], p. 16-27). By C(H l(R), [0, T ]) we denote a class of continuous
functions with respect to t on the segment [0, T ] with values in Hl(R). The norm of a function f(x, t)
in C(H l(R), [0, T ]) is defined by the equality

‖f‖l := max
t∈[0, T ]

[
|f |l (t)

]
.

Let us denote by Cm
b (R) the space of functions f : R → R that are m-times continuously differ-

entiable and such that all derivatives up to order m are bounded. This space is equipped with the
norm

‖f‖Cmb (R) =
m∑
k=0

sup
x∈R
|f (k)(x)|.

Assuming u(x, t) ∈ C3,2−α(QT
0 )∩C1

t (Q̄T
0 ) is a classical solution of the problem, and that the functions

f, ϕ, ψ, and g are sufficiently smooth, we proceed to transform the inverse problem given by equations
(2.1)-(2.3).

Lemma 2.2. Let ux(x, t) be a classical solution to the problem (2.1)-(2.2) with ϕ(0) = g(0), ψ(0) =
g′(0) and ϕ′(x), ψ′(x), fx(x, t). Moreover, let, v(x, t) = ux(x, t). Then, the problem (2.1)-(2.3) is
equivalent to the problem of determining the functions v ∈ C2,2−α(QT

0 ) ∩ C1
t (Q̄T

0 ) and k(t) ∈ C[0, T ]
from the system of equations:(

D(α)
t v

)
(x, t)− vxx(x, t) =

∫ t

0

k(τ)v(x, t− τ)dτ + fx(x, t), x ∈ R, t ∈ (0, T ], (2.4)

v|t=0 = ϕ′(x), vt|t=0 = ψ′(x), x ∈ R, (2.5)

v|x=0 = (D(α)
t g)(t)−

∫ t

0

k(τ)g(t− τ)dτ − f(0, t). (2.6)

Proof. Denote for this purpose the first derivative of u(x, t) with respect to x by v(x, t), i.e. v(x, t) :=
ux(x, t). Differentiating (2.1) and (2.2) once in x, we get

(
D(α)
t v

)
(x, t)− vxx(x, t) =

∫ t

0

k(τ)v(x, t− τ)dτ + fx(x, t), x ∈ R, t ∈ (0, T ], (2.7)

v|t=0 = ϕ′(x), vt|t=0 = ψ′(x), x ∈ R. (2.8)

To obtain an additional condition for the function v(x, t), we note that the second term in (2.1) is
vx(x, t). Setting x = 0 in (2.1) and using equality (2.3), we obtain

vx|x=0 = (D(α)
t g)(t)−

∫ t

0

k(τ)g(t− τ)dτ − f(0, t). (2.9)

Thus, if the problem (2.1)-(2.3) has a solution (u, k), then the problem (2.7)-(2.9) also has a solution
(v, k) with the same k, and v(x, t) = ux(x, t).

Conversely, let (v, k) satisfy (2.7)-(2.9). Let us show that there exists, a unique solution (u, k) of
system (2.1)-(2.3) with given k. The uniqueness follows from the uniqueness of the solution of the
Cauchy problem (2.1)-(2.2). To prove existence, we note that if (u, k) is a solution of (2.1)-(2.3), then
v(x, t) = ux(x, t); hence

u(x, t) =

∫ x

0

v(ξ, t)dξ + Φ(t). (2.10)
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Let us find Φ(t) such that (2.1)-(2.3) are satisfied. From (2.3), we obtain that Φ(t) = g(t). Hence
u(x, 0) =

∫ x
0
v(ξ, 0)dξ + g(0) = ϕ(x)− ϕ(0)− g(0) = ϕ(x), i.e., (2.2) is valid. In this manner, it is not

difficult to show that ut(x, 0) = ψ(x), i.e. (2.2) is valid. We need to verify that (2.1) holds. From
(2.7) and (2.9) it follows that

Dαt u(x, t)− uxx(x, t)−
∫ t

0

k(τ)u(x, t− τ)dτ

=

∫ x

0

(
Dαt v(ξ, t)− vξξ(ξ, t)−

∫ t

0

k(τ)v(ξ, t− τ)

)
︸ ︷︷ ︸

=fξ(ξ,t)

dξ

− vx(0, t) + Dαt g(t)−
∫ t

0

k(τ)g(t− τ)dτ = f(x, t).

So, the equivalence of (2.1)-(2.3) and (2.7)-(2.9) is proved. �

Given functions k(t), f(x, t), ϕ(x), ψ(x) and a number α ∈ (1, 2), the problem of finding the solution
to the Cauchy type problem (2.7)-(2.8) we call as auxiliary Cauchy problem.

We now present well-known definitions, assertions, and formulas that will be used in the proofs of
the main results.

3. Preliminaries

In this section, we present well known definitions, lemmas and theorems that will be used for the
proofs of main results and they will mainly deal with fractional calculus.

Fox’s H−function. The Fox’s H-function is one of the so-called special functions of the fractional
calculus and contains, as particular case the Mittag-Leffer function. The H−function was introduced
by Fox [37] as generalization of the Meijer function. Here we adopt the definition and properties
mentioned in [38] with minimal modifications regarding notation. Moreover, the H−function is defined
by means of the Mellin-Barnes type integral in the following form

Hm,n
p,q (z) ≡ Hm,n

p,q

[
z
∣∣∣(a1, A1),...,(ap, Ap)

(b1, B1),...,(bq, Bq)

]
=

1

2πi

∫
Ω

Hm,n
p,q (s)z−sds,

where

Hm,n
p,q (z) =

m∏
j=1

Γ(bj +Bjs)
n∏
l=1

Γ(1− al −Als)
q∏

j=m+1

Γ(1− bj −Bjs)
p∏

l=n+1

Γ(al +Als)
(3.1)

i = (−1)1/2, z 6= 0 and z−s = exp[−s{ln|z| + iargz}]. We note that ln|z| represents the natural
logarithm of |z| and argz is not necessarily the principal argument. In (3.5), an empty product is
always interpreted as unity, m,n, p, q ∈ N, 0 ≤ n ≤ p, 1 ≤ m ≤ q, Ak, Bk ∈ R+ := (0,+∞); ak, bj ∈
C(R), k = 1, ..., p, j = 1, ..., q. The contour Ω starting at the point p−i∞ and going to p+i∞ such that
all the poles of Γ(bj +Bjs), j = 1, ...,m are separated from those of Γ(1−ak−Aks), k = 1, ..., n, p ∈ R.
The integral is convergent in the following cases:

(1) α > 0, |argz| < 1
2
πα va z 6= 0;

(2) α = 0, σµ+ R(δ) < −1, argz = 0 va z 6= 0,
where

α :=
n∑
j=1

Aj −
p∑

j=n+1

Aj +
m∑
j=1

Bj −
q∑

j=m+1

Bj,

µ :=
q∑
j=1

Bj −
p∑
j=1

Aj, δ :=
q∑
j=1

bj −
p∑
j=1

aj +
p− q

2
.

A more detailed study about the H-function can be found in [38]. We mentioned some of the properties
and its Hankel transform that will be used in this paper.
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Properties of H−function ([38], pp. 11-13). We have the following reduction formulas:

Hm,n
p,q

[
z
∣∣∣(a1,A1),...,(ap,Ap)

(b1,B1),...,(bq−1,Bq−1),(a1,A1)

]
= Hm,n−1

p−1,q−1

[
z
∣∣∣(a2,A2),...,(ap,Ap)

(b1,B1),...,(bq−1,Bq−1)

]
, (3.2)

Hm,n
p,q

[
z
∣∣∣[ap,Ap]

[bq,Bq ]

]
= Hn,m

q,p

[
1

z

∣∣∣[1−bq,Bq ]
[1−ap,Ap]

]
, n ≥ 1, q > m. (3.3)

Proposition 3.1. Let µ ≥ 0 and Al(bj + i) 6= Bj(al − i
′ − 1) be satisfied. Then the H-function has

the asymptotic expansion at zero given by [38]

Hm,n
p,q (z) = O(zc), |z| → 0,

where

c := min
1≤j≤m

[
R(bj)

Bj

]
,

R(bj) denotes the real part of the complex number bj.

In this article, we also need the asymptotic behaviour of H− functions for z →∞. It will need only
one result of this kind, for a specific class of H− functions, for a real argument, with only the leading
term of the asymptotic expansion:

Proposition 3.2. The H−function has the asymptotic expansion at given by

Hm,0
p,m

[
z
∣∣∣(aj ,Aj)p1
(bj ,Bj)m1

]
∼ Cz

1−ε
ρ exp

(
−χ 1

ρ ρz
1
ρ

)
, z →∞,

where C = const, ε :=
p∑
j=1

aj −
m∑
j=1

bj + 1
2
(m− p+ 1), χ :=

p∏
j=1

A
Aj
j

m∏
j=1

B
−Bj
j , ρ :=

m∑
j=1

Bj −
p∑
j=1

Aj.

Now we give formulas for differentiating the H -functions of a special form. For the proofs and
further details, see [38, 40]. They have the following forms:

d

dz
Hm,n
p,q

[
z
∣∣∣(a1,A1)

(b1,B1),

]
= −1

z
Hm+1,n
p+1,q+1

[
z
∣∣∣(a1,A1),(0,1)

(1,1),(b1,B1)

]
, (3.4)

(
d

dz

)k {
zωHm,n

p,q

[
Czσ

∣∣∣(a1,A1)

(b1,B1),

]}
= zω−kHm+1,n

p+1,q+1

[
Czσ

∣∣∣(−ω,σ),(a1,A1)

(b1,B1),(k−ω,σ)

]
. (3.5)

Mittag-Leffler function. A two-parameter Mittag-Lefller (M-L) function is defined as ([41], pp
40-45)

Eα,β(z) :=
∞∑
n=0

zn

Γ(nα+ β)
,

where α, β, z ∈ C,R(α) > 0.
The relationship between the two-parameter Mittag-Leffler function and the Fox H -function is noted

below

Eα,β(z) = H1,1
1,2

[
z
∣∣∣(0,1)

(0,1),(1−β,α)

]
. (3.6)

4. Investigation of auxiliary Cauchy problem

First we consider the Cauchy problem

D(α)
t v(x, t)− vxx(x, t) = F (x, t), t > 0, x ∈ Rd (4.1)

with the initial condition
v|t=0 = η1(x), vt|t=0 = η2(x), x ∈ Rd. (4.2)

In the work [9] the solution to the problem (3.9)-(4.1)
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v(x, t) =

∫
Rd
Z1(x− ξ, t)η1(ξ)dξ +

∫
Rd
Z2(x− ξ, t)η2(ξ)dξ

+

∫ t

0

∫
Rd
Y (x− ξ, t− τ)F (ξ, τ)dξdτ, t > 0, x ∈ Rd, (4.3)

where

Zj(x, t) =
tj−1

π
d
2 |x|d

H2,0
1,2

[
|x|2

4tα

∣∣∣(j,α)

( d2 ,1),(1,1)

]
, j = 1, 2,

Y (x, t) =
tα−1

π
d
2 |x|d

H2,0
1,2

[
|x|2

4tα

∣∣∣(α,α)

( d2 ,1),(1,1)

]
(4.4)

are the fundamental solutions of the one dimensional fractional diffusion equation.
For the Fox’s H-function, based on Proposition 3.2, we get the estimate:∣∣∣H2,0

1,2

[
z
∣∣∣(j,α)

( 1
2 ,1),(1,1)

]∣∣∣ ≤ C|z| 32−jexp(−α α
2−α (2− α)|z| 1

2−α ), z →∞. (4.5)

In (4.3), substituting the expression ϕ′(x), ψ′(x) and
∫ t

0
k(τ)v(x, t − τ)dτ + fx(x, t) instead of

η1(x), η2(x) and F (x, t) respectively, then we obtain the integral equation for solution to the direct
problem (2.7)-(2.8)

v(x, t) = v0(x, t)−
∫ t

0

∫
R
Y (x− ξ, t− τ)

∫ τ

0

k(ζ)v(ξ, τ − ζ)dζdξdτ, (4.6)

where

v0(x, t) :=

∫
R
Z1(x− ξ, t)ϕ′(ξ)dξ +

∫
R
Z2(x− ξ, t)ψ′(ξ)dξ

+

∫ t

0

∫
R
Y (x− ξ, t− τ)fξ(ξ, τ)dξdτ. (4.7)

The following assertion holds:

Lemma 4.1. If k(t) ∈ C[0, T ], f(x, t) ∈ C(C2
b (R), [0, T ]), ϕ(x) ∈ Hγ+2(R), ψ(x) ∈ H l+1(R), l ∈

(0, 1], γ ∈ ( 2
α
− 1, 1], then there exists a unique solution of the integral equation (4.6) such that

v(x, t) ∈ C2,2−α(QT
0 ) ∩ C1

t (Q
T

0 ).

Proof. For proof of Lemma 4.1 we use the method of successive approximations and consider the
sequence of functions:

vn(x, t) = −
∫ t

0

∫
R

Y (x− ξ, t− τ)

∫ τ

0

k(ζ)vn−1(ξ, τ − ζ)dζdξdτ, n = 1, 2, ..., (4.8)

where v0(x, t) is determined by the equality (4.7).
Further, we need estimations for functions Z1(x, t), Z2(x, t), Y (x, t) and their some derivatives (see

[35]): ∣∣∣∣ ∂m∂xmZ1(x, t)

∣∣∣∣ ≤ Ct−α2 (m+1) exp
{
−σ(t−α/2|x|) 2

2−α

}
, (4.9)∣∣∣∣ ∂m∂xmZ2(x, t)

∣∣∣∣ ≤ Ct−α2 (m+1)+1 exp
{
−σ(t−α/2|x|) 2

2−α

}
, (4.10)∣∣∣∣ ∂m∂xmY (x, t)

∣∣∣∣ ≤ Ct−α2 (m−1)−1 exp
{
−σ(t−α/2|x|) 2

2−α

}
, |m| ≤ 3; (4.11)
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∣∣∣∣∣ ≤ Ct−1−α2 exp
{
−σ(t−α/2|x|) 2

2−α

}
, (4.12)

∣∣∣∣∣ ∂∂tZ2(x, t)

∣∣∣∣∣ ≤ Ct−α2 exp
{
−σ(t−α/2|x|) 2

2−α

}
, (4.13)

∣∣∣∣∣ ∂∂tY (x, t)

∣∣∣∣∣ ≤ Ctα2−2 exp
{
−σ(t−α/2)|x| 2

2−α

}
, (4.14)

here and below the letters C, σ will denote various positive constants. We also note that in accordance
with the construction of the functions Z1(x, t), Z2(x, t), Y (x, t), the following equalities are valid:∫

R
Z1(x, t)dx = 1, t ∈ [0, T ], (4.15)∫

R
Z2(x, t)dx = t, t ∈ [0, T ], (4.16)∫

R
Y (x, t)dx =

tα−1

Γ(α)
, t ∈ [0, T ]. (4.17)

Introduce the notations

ϕ0 := |ϕ|2+γ , ψ0 := |ψ|1+l, f0 := ‖f‖C(C2
b (R);[0,T ]).

We estimate the modulus of v0(x, t) in the domain Q
T

0 as follows

|v0(x, t)| ≤ ϕ0 + tψ0 +
f0

Γ(α− 1)

∫ t

0

(t− τ)α−1dτ ≤ ϕ0 + Tψ0 +
f0T

α

Γ(α+ 1)
=: C0.

Similary way from (4.8) for n = 1, 2, we obtain

|v1(x, t)| ≤ C0‖k‖
∫ t

0

(t− τ)α−1dτ ≤ C0‖k‖Γ(α)

Γ(1 + α)
Tα, (4.18)

|v2(x, t)| ≤ C0‖k‖
Γ(α)Γ(α+ 1)

∫ t

0

(t− τ)α−1ταdτ ≤ C0(‖k‖Γ(α))2

Γ(1 + 2α)
T 2α.

For arbitrary n = 1, 2, ..., we have

vn(x, t) ≤ C0(‖k‖Γ(α))n

Γ(nα+ 1)
T nα.

It follows from the above estimates that the series

v(x, t) =
∞∑
n=0

vn(x, t).

converges uniformly in Q̄T
0 , since it can be majorized in Q̄T

0 by the convergent numerical series

|v(x, t)| ≤ C0

∞∑
n=0

(‖k‖Γ(α))n

Γ(nα+ 1)
T nα = C0Eα,1(‖k‖Γ(α)Tα). (4.19)

where Eα,1(·) is the one-parameter Mittag-Leffler function of a nonnegative real argument (see, for
example, [41], pp.40-45).

Under the assumptions of Lemma 4.1 and on the bases of estimates (4.9)- (4.14), one has the

inclusion vn(x, t) ∈ C2,2−α (QT
0 ) ∩ C1

t (Q
T

0 ), n = 1, 2, . . . . According to the general theory of integral

equations, this implies that the same property will be possessed by the function v(x, t) in Q
T

0 . As
usual, this function is a solution of the integral equation (4.6). Thus, Lemma 4.1 is proven. �



Kernel identification problem in a time-fractional wave equation 57

Now we will obtain an estimate for the norm of the difference between the solution of the original
integral equation (4.6) and the solution of this equation with perturbed functions k̃, ϕ̃′, ψ̃′ and f̃x.

Let ṽ(x, t) be a solution of the integral equation (4.6) corresponding to the functions k̃, ϕ̃′, ψ̃′ and

f̃x i.e.,

ṽ(x, t) = ṽ0(x, t)−
∫ t

0

∫
R
Y (x− ξ, t− τ)

∫ τ

0

k̃(ζ)ṽ(ξ, τ − ζ)dζdξdτ, (4.20)

where

ṽ0(x, t) :=

∫
R
Z1(x− ξ, t)ϕ̃′(ξ)dξ +

∫
R
Z2(x− ξ, t)ψ̃′(ξ)dξ

+

∫ t

0

∫
R
Y (x− ξ, t− τ)f̃ξ(ξ, τ)dξdτ. (4.21)

Composing the difference v−ṽ with the help of the equations (4.6)-(4.20)and introducing the notations

v − ṽ = v̄, v0 − ṽ0 = v̄0, k − k̃ = k̄, we get the integral equation for v̄

v̄(x, t) = v̄0(x, t)−
∫ t

0

∫
R
Y (x− ξ, t− τ)

∫ τ

0

k̄(ζ)ṽ(ξ, τ − ζ)dζdξdτ−

−
∫ t

0

∫
R
Y (x− ξ, t− τ)

∫ τ

0

k̃(ζ)v̄(ξ, τ − ζ)dζdξdτ, (4.22)

from which is derived the following linear integral inequality for |v̄(x, t)|:

|v̄(x, t)| ≤ |v̄0(x, t)|+ C1C0Eα,1(‖k̃‖Γ(α)Tα)‖k̄‖
∫ t

0

(t− τ)α−1τdτ

+ ||k̃||
∫ t

0

dτ

∫
R

Y (x− ξ, t− τ)

∫ τ

0

|v̄(ξ, τ − ζ)|dζdξ

= |v̄0(x, t)|+ C2C0Eα,1(‖k̃‖Γ(α)Tα)Tα+1‖k̄‖

+ ‖k̃‖
∫ t

0

dτ

∫
R
Y (x− ξ, t− τ)

∫ τ

0

|v̄(ξ, τ − ζ)|dζdξ, (4.23)

where Ci > 0 various constants depending on α, σ. It follows from the equalities (4.6) and (4.21) the
estimate

|v̄0(x, t)| ≤ |ϕ̄|2+γ + T |ψ̄|1+l +
Tα

Γ(1 + α)
‖f̄‖C(C2

b (R);[0,T ]),

where ϕ̄ = ϕ− ϕ̃, ψ̄ = ψ − ψ̃, f̄ = f − f̃ .
Introduce notation

θ := max

{
1, T,

Tα

Γ(1 + α)
, C2C0Eα,1(‖k̃‖Γ(α)Tα)Tα+1

}
.

Applying the method of successive approximations to inequality (4.23), by the aid of the scheme

|v̄(x, t)|0 ≤ θ
[
|ϕ̄|2+γ + |ψ̄|1+l + ||f̄ ||+ ¯‖k‖

]
,

|v̄(x, t)|n ≤ ‖k̃‖
∫ t

0

dτ

∫
Rn
Y (x− ξ, t− τ)

∫ τ

0

|v̄(ξ, τ − ζ)|n−1dζdξ, n = 1, 2, ....

We arrive at the estimate

|v̄(x, t)| ≤ θ
[
|ϕ̄|2+γ + |ψ̄|1+l + ‖f̄‖C(C2

b (R);[0,T ]) + ¯‖k‖
]
, (4.24)

which will be used in the next section. Indeed, the expression (4.24) is the stability estimate for the
solution to auxiliary Cauchy problem.. In particular, the uniqueness for this solution follows from
(4.24).
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5. Investigation of Inverse problem

In this section, we study the inverse problem (2.7)-(2.9) using the contraction mapping principle.
First, we differentiate equation (4.6) with respect to x, set x = 0, and equate the result to equation
(2.9).

∫
R
Z1(y, 1)ϕ′′(tα/2y)dξ +

∫
R
Z2(ξ, t)ψ′′(ξ)dξ +

∫ t

0

∫
R
Y (ξ, t− τ)fξξ(ξ, τ)dξdτ

−
∫ t

0

∫
R
Y (ξ, t− τ)

∫ τ

0

k(ζ)vξ(ξ, τ − ζ)dζdξdτ

= ∂αt g(t)−
∫ t

0

k(τ)g(t− τ)dτ − f(0, t), (5.1)

where

∂αt g(t) =
1

Γ(2− α)

∫ t

0

g′′(s)

(t− s)α−1
ds.

Next, we differentiate both sides of the resulting equation (5.1) with respect to the variable t. This
yields the following integral equation for determining k(t) :

k(t) = k0(t) +
1

g(0)

[ ∫ t

0

∫
R
Yt(ξ, t− τ)

∫ τ

0

k(ζ)vξ(ξ, τ − ζ)dζdξdτ −
∫ t

0

k(τ)g′(t− τ)dτ

]
, (5.2)

where

k0(t) =
1

g(0)

[
d

dt

(
∂αt g(t)

)
− ft(0, t)−

α

2
tα/2−1

∫
R
Z1(y, 1)yϕ′′′(tα/2y)dy −

∫
R
Z2t(ξ, t)ψ

′′(ξ)dξ

−
∫ t

0

∫
R
Yt(ξ, t− τ)fξξ(ξ, τ)dξdτ

]
.

Theorem 5.1. If f ∈ C1
(
C2
b (R), [0, T ]

)
, ϕ(x) ∈ Hγ+3(R), ψ(x) ∈ H l+2(R),l ∈ (0, 1], γ ∈ ( 2

α
− 1, 1],

g(t) ∈ C3
(
[0, T ]

)
, with g′′(0) = 0, and the conditions of agreement ϕ(0) = g(0) 6= 0, ψ(0) = g′(0).

Then there exists a number T ∗ ∈ (0, T ), such that there exists a unique solution k(t) ∈ C[0, T ∗] of the
inverse problem (2.7)-(2.9).

Remark 5.2. The g(t) ∈ C3
(
[0, T ]

)
and g′′(0) = 0 conditions imposed on g in Theorem 5.1 ensure

that d
dt

(
∂αt g(t)

)
∈ C[0, T ].

Proof. Let us write equations (4.6) and (5.2) in the form of a closed system of integral equations of
the Volterra type of the second kind. To do this, we introduce into consideration the vector function
ν =

(
ν1(x, t), ν2(x, t), ν3(x, t)

)
by specifying their components by the equalities

ν1(x, t) = v(x, t), ν2(x, t) := vx(x, t), ν3(x, t) := ν3(t) = k(t).

Then the system of equations (4.6) and(5.2) takes the operator form

ν = Aν, (5.3)

where the operator A = (A1,A2,A3), in accordance with the right-hand sides of equations (4.6)
and(5.2) is defined by the equalities

A1ν = ν01 −
∫ t

0

∫
R
Y (x− ξ, t− τ)

∫ τ

0

ν3(λ)ν1(ξ, τ − λ)dλdξdτ, (5.4)
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A2ν = ν02 −
∫ t

0

∫
R
Y (x− ξ, t− τ)

∫ τ

0

ν3(λ)ν2(ξ, τ − λ)dλdξdτ, (5.5)

A3ν = ν03 +
1

g(0)

∫ t

0

∫
R
Yt(x− ξ, t− τ)

∫ τ

0

ν3(λ)ν1(ξ, τ − λ)dλdξdτ − 1

g(0)

∫ t

0

ν3(τ)g(t− τ)dτ. (5.6)

These formulas use the notation vector function ν0 = (ν01, ν02, ν03):

ν01(x, t) =

∫
R
Z1(x− ξ, t)ϕ′(ξ)dξ +

∫
R
Z2(x− ξ, t)ψ′(ξ)dξ +

∫ t

0

∫
R
Y (x− ξ, t− τ)fξ(ξ, τ)dξdτ,

ν02(x, t) =

∫
R
Z1(ξ, t)ϕ′′(x− ξ)dξ +

∫
R
Z2(ξ, t)ψ′′(x− ξ)dξ +

∫ t

0

∫
R
Y (ξ, t− τ)fξξ(x− ξ, τ)dξdτ,

ν03(t) =
1

g(0)

[
d

dt

(
∂αt g(t)

)
− ft(0, t)−

α

2
tα/2−1

∫
R
Z1(y, 1)yϕ′′′(tα/2y)dy −

∫
R
Z2t(ξ, t)ψ

′′(ξ)dξ

−
∫ t

0

∫
R
Yt(ξ, t− τ)fξξ(ξ, τ)dξdτ

]
.

Now, we will show that the functions ν01, ν02, ν03, defined above, have finite absolute values. To do
this, let ϕ ∈ H l+3(R), ψ ∈ C2

b (R) and f ∈ C(C2
b (R); [0, T ]) be given, then we have

|ν01| ≤
2C

σ
2−α
α

Γ
(4− α

2

)[
‖ϕ′‖Cb(R) + T‖ψ′‖Cb(R) + Tα/2‖f ′‖C(Cb(R),[0,T ])

]
=: Φ01,

|ν02| ≤
2C

σ
2−α
α

Γ
(4− α

2

)[
‖ϕ′′‖Cb(R) + T‖ψ′′‖Cb(R) + Tα/2‖f ′′‖C(Cb(R),[0,T ])

]
=: Φ02

|ν03| =
∣∣∣∣∣ 1

g(0)

[
d

dt

(
∂αt g(t)

)
− ft(0, t)−

α

2
tα/2−1

∫
R
Z1(y, 1)yϕ′′′(tα/2y)dy −

∫
R
Z2t(ξ, t)ψ

′′(ξ)dξ

−
∫ t

0

∫
R
Yt(ξ, t− τ)fξξ(ξ, τ)dξdτ

]∣∣∣∣∣ ≤ g0 + f0 + C̃1T
α−1
[
ϕ′′′
]l

+ C̃2‖ψ′′‖Cb(R) + C̃3T
α−1 = Φ03,

where

g0 := max

[
max
t∈[0,T ]

∣∣∣∣ ddt
(
∂αt g(t)

)
g(0)

∣∣∣∣, max
t∈[0,T ]

∣∣∣∣g′(t)g(0)

∣∣∣∣], f0 = max
t∈[0,T ]

∣∣∣∣ft(0, t)g(0)

∣∣∣∣.
We obtain

ν0 = (ν01, ν02, ν03).

Fix a number r > 0 and consider the ball

B[ν0, r] := {ν ∈ Y : ‖ν − ν0‖ ≤ r} ,

where Y := C(Q̄T
0 )× C(Q̄T

0 )× C[0, T ].
First we prove that for an enough small T > 0 the operator A maps the ball B[ν0, r] into itself, i.e.

the condition ν ∈ B[ν0, r] implies that Aν ∈ B[ν0, r]. It is easy to see that for ν ∈ B[ν0, r] the estimate

‖ν‖ ≤ ‖ν0‖+ r := r0 (5.7)

holds. Thus, r0 is a known number.
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Having estimated the norm of the differences, we observe that

‖A1ν − ν01‖ = max
t∈[0,T ]

∣∣∣∣∣
∫ t

0

∫
R
Y (x− ξ, t− τ)

∫ τ

0

ν3(λ)ν1(ξ, τ − λ)dλdξdτ

∣∣∣∣∣
≤ CT α2

4 +αΓ(1− α

2
)r2

0 =: β1(T )

‖A2ν − ν02‖ = max
t∈[0,T ]

∣∣∣∣∣
∫ t

0

∫
R
Y (x− ξ, t− τ)

∫ τ

0

ν3(λ)ν2(ξ, τ − λ)dλdξdτ

∣∣∣∣∣
≤ CT α2

4 +αΓ(1− α

2
)r2

0 =: β2(T )

‖A3ν − ν03‖ =
1

|g(0)|
max
t∈[0,T ]

∣∣∣∣∣
∫ t

0

∫
R
Yt(x− ξ, t− τ)

∫ τ

0

ν3(λ)ν1(ξ, τ − λ)dλdξdτ −
∫ t

0

ν3(τ)g(t− τ)dτ

∣∣∣∣∣
≤ 1

|g(0)|

[
Γ(α)

Γ(α+ 2)
r2

0T
α+1 + g0r0T

]
=: β3(T ).

It is straightforward to observe that βi, (i = 1, 2, 3) are increasing functions of T and pass through
the origin. Additionally, the system of equations βi(T ) = r has solutions, and we denote them by
T = Ti, i = 1, 2, 3 respectively. Let T0 be the smallest of these solutions. Then, for every T in the
interval [0, T0], we have AB[ν0r] ⊂ B[ν0r].

Now let ν(t), ν̃(t) be two arbitrary elements in B[ν0, r]. In this case, using the obvious inequalities

|νkνs − ν̃kν̃s| ≤ |νk(νs − ν̃s) + ν̃s(νk − ν̃k)| ≤ 2r0||ν − ν̃||

and estimates for the integrals similar to those given above, we obtain

||(A1ν −A1ν̃)|| = max
(x,t)∈D̄T

∣∣∣∣ ∫ t

0

∫
R
Y (x− ξ, t− τ)

∫ τ

0

(ν3(λ)ν1(λ)− ν̃3(λ)ν̃1(λ))dλdξdτ

∣∣∣∣
≤ 4r0C

σ
2−α

2

Γ(4− α
2
)Γ(α

2
)

Γ(α
2

+ 2)
Tα/2+1‖ν − ν̃‖ =: β̃1(T )‖ν − ν̃‖

‖(A2ν −A2ν̃)‖ = max
(x,t)∈D̄T

∣∣∣∣ ∫ t

0

∫
R
Y (x− ξ, t− τ)

∫ τ

0

(ν3(λ)ν2(λ)− ν̃3(λ)ν̃2(λ))dλdξdτ

∣∣∣∣
≤ 4r0C

σ
2−α

2

Γ(4− α
2
)Γ(α

2
)

Γ(α
2

+ 2)
Tα/2+1‖ν − ν̃‖ =: β̃2(T )‖ν − ν̃‖

||(A3ν −A3ν̃)|| = 1

|g(0)|
max

(x,t)∈D̄T

∣∣∣∣ ∫ t

0

∫
R
Yt(x− ξ, t− τ)

∫ τ

0

(ν3(λ)ν1(λ)− ν̃3(λ)ν̃1(λ))dλdξdτ

+
1

g(0)

∫ t

0

g(t− τ)(ν3 − ν̃3)(τ)dτ

∣∣∣∣
≤ CΓ(α− 1)

Γ(α+ 1)g(0)
Tα‖ν − ν̃‖+

|g0|T
|g(0)|

‖ν − ν̃‖ =: β̃3(T )‖ν − ν̃‖

Suppose that T00 is the smallest number among Ti, (i = 1, 2, 3) satisfying the inequalities βi(T ) =
ρ < 1. Then, for all T ∈ [0, T00] and x ∈ R, the operator A is contractive on the set B[ν0, r]. Let us
denote by T ∗ the minimum of T0 and T00. As a result, equation (5.3) has a unique solution for all
(x, t) ∈ Q̄T∗

0 . Theorem 5.1 is proven. �

Remark 5.3. According to Theorem 5.1, the solution to the inverse problem can be uniquely found
on the segment [0, T ∗]. Then the solution to Cauchy problem is found in the same way as it was
found in the case of auxiliary Cauchy problem .
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Conclusion

The inverse problem of determining convolution kernel in the time-fractional wave equation with the
Caputo derivative was considered. Direct problem is Cauchy problem for this equation and first it was
studied this problem. The fundamental solution of the time-fractional wave equation is constructed
and properties of this solution are investigated. The fundamental solution contains a Fox’s function,
which is widely used in the theory of diffusion-wave equation. Using the formulas of asymptotic
expansions for the fundamental solution and its derivatives, an estimate for the solution of the direct
problem is obtained. A priori estimate contains the norm of the unknown kernel function and it
was used for studying the inverse problem. The inverse problem is reduced to the equivalent integral
equation. By the fixed point argument in suitable functional classes the local solvability is proven.
The global uniqueness results and also the stability estimate for solution to the inverse problem are
established.

In applications, more important is an equation of the form (2.1), when under the integral sign the
kernel k(t) is multiplied by uxx. The study of direct and inverse problems for this equation similar to
those in this work is an open problem.
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Abstract. This article studies the inverse problem of finding a multiplier on the right-hand side,
depending on the spatial variable x. In the direct problem, an initial-boundary value problem for a
fourth-order differential equation is considered. Using the Fourier method, the solution to the initial-
boundary value problem is constructed, and its properties are investigated. Sufficient conditions for
the existence of a solution to the direct problem are obtained, which will be used in the study of the
inverse problem. Theorems on local existence and global uniqueness are proven, and an estimate of
the conditional stability of the solution to both the direct and inverse problems is provided.
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1. Introduction

Differential equations are commonly used to model real-world problems in science and engineering,
which often involve multiple parameters and variable dependencies. Solving these problems typically
requires addressing initial and boundary conditions, meaning the solutions must satisfy specific con-
straints and data. However, modeling real-world scenarios is a complex task that can take various
forms, and finding an exact solution is often challenging.

The study of vibrations in rods, beams, and plates holds significant importance in structural de-
sign, stability analysis of rotating shafts, as well as in understanding the vibration behavior of ships
and pipelines. These problems often involve differential equations of orders higher than the second,
reflecting the complexity inherent in analyzing such dynamic systems [1]–[4]. In recent years, there
has been a growing interest in the study of both linear and nonlinear initial boundary value problems,
and inverse problems involving the equation governing the vibration of a beam [5]–[14]. Addition-
ally, an initial-boundary problem for the inhomogeneous heat equation, which includes a higher-order
derivative alongside an initial condition, was examined in [13].

Inverse problems in mathematical physics have been extensively investigated across various classes
of differential equations. Inverse problems associated with the simplest hyperbolic-type equation were
discussed in detail in the monograph [15]. The papers [16]–[20] and other sources have delved into
methods for establishing local existence and uniqueness theorems, as well as uniqueness and conditional
stability theorems, for solutions of inverse dynamic problems. Additionally, numerical methods for
discovering solutions have been explored.

Boundary value problems for the Laplace, Poisson, and Helmholtz equations with boundary con-
ditions involving higher-order derivatives have been explored in the works of Bavrin [21], Karachik
[22]–[25], and Sokolovskii [26].

Now we reconsider the following equation

utt + uxxxx = p(x)q(t), (x, t) ∈ D, (1.1)

in the domain D := {(x, t); 0 < x < 1, 0 < t ≤ T} with initial conditions

∂ku

∂tk
(x, 0) = ϕ(x),

∂k+1u

∂tk+1
(x, 0) = ψ(x), 0 ≤ x ≤ 1, (1.2)

and boundary conditions

u(0, t) = u(1, t) = uxx(0, t) = uxx(1, t) = 0, 0 ≤ t ≤ T, (1.3)

where k ≥ 2 is a fixed natural number.
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In the direct problem, it is required to find a function u(x, t) ∈ C4,2
x,t (D) ∩ C2,k+1

x,t (D) satisfying
equalities (1.1)–(1.3) for given number T and sufficiently smooth functions p(x), q(t), ϕ(x) and ψ(x).

The inverse problem consists in finding the function p(x), from the available additional information
about the solution to the direct problem (1.1)–(1.3) :

u(x, T ) = g(x), 0 ≤ x ≤ 1, (1.4)

where g(x) is a given sufficiently smooth function.

2. Study of the direct problem

The solution of the direct problem (1.1)–(1.3) will be found in the following form

u(x, t) =
∞∑
n=1

un(t)Xn(x), (2.1)

where Xn(x) is the solution to the following problem:

X(4)(x) + λX(x) = 0,

X(0) = X(1) = X ′′(0) = X ′′(1) = 0. (2.2)

The solution to equation (2.2) is obtained by:

Xn(x) =
√

2 sinµnx, λn = −µ4
n = − (πn)

4
. (2.3)

It is known [5], the function system (2.3) is orthonormal and complete in L2[0, 1]. Let us introduce
the function:

un(t) =
√

2

∫ 1

0

u(x, t) sinµnx dx.

By applying the formal scheme of the Fourier method and using equations (1.1) and (1.3), we obtain
the folowing result:

u′′n(t) + µ4
n un(t) = pnq(t), 0 < t ≤ T, n = 1, 2, ..., (2.4)

u(k)
n (0) = ϕn, u(k+1)

n (0) = ψn, (2.5)

where

pn =

∫ 1

0

p(x)Xn(x) dx, ϕn =

∫ 1

0

ϕ(x)Xn(x) dx, ψn =

∫ 1

0

ψ(x)Xn(x) dx. (2.6)

The solution to problem (2.4) and (2.5) is represented as

un(t) =
ϕn
µ2k
n

cos

(
µ2
nt−

πk

2

)
+

ψn
µ2k+2
n

sin

(
µ2
nt−

πk

2

)

−
[ k+1

2 ]−1∑
i=0

(−1)
i
µ4i−2k−2
n pnq

(k−1−2i)(0) sin

(
µ2
nt−

πk

2

)

−
[ k2 ]−1∑
i=0

(−1)
i
µ4i−2k
n pnq

(k−2−2i)(0) cos

(
µ2
nt−

πk

2

)
+
pn
µ2
n

∫ t

0

q(t− τ) sinµ2
nτdτ . (2.7)

Using (2.7) we find the following derivatives of un(t):

u(k)
n (t) = ϕn cosµ2

nt+
ψn
µ2
n

sinµ2
nt+

pn
µ2
n

∫ t

0

q(k)(t− τ) sinµ2
nτdτ , (2.8)

u(k+1)
n (t) = −µ2

nϕn sinµ2
nt+ ψn cosµ2

nt+
pn
µ2
n

q(k)(0) sinµ2
nt+

pn
µ2
n

∫ t

0

q(k+1)(t− τ) sinµ2
nτdτ . (2.9)

Now we show that the solution to problem (1.1)–(1.3) exists and is unique.
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Lemma 2.1. The estimates

|un(t)| ≤ 1

µ2k
n

|ϕn|+
1

µ2k+2
n

|ψn|+
|pn|||q||
µ4
n − 1

(
µ4[ k+1

2 ]−2k−2
n + µ4[ k2 ]−2k

n

)
+
|pn| ||q||
µ2
n

T, (2.10)

∣∣∣u(k)
n (t)

∣∣∣ ≤ |ϕn| +
1

µ2
n

|ψn|+
|pn| ||q||
µ2
n

T, (2.11)

∣∣∣u(k+1)
n (t)

∣∣∣ ≤ µ2
n |ϕn| + |ψn|+

|pn|||q||
µ2
n

(1 + T ), (2.12)

hold for any t ∈ [0, T ].

Proof. Estimating un(t) for any t ∈ [0, T ], we obtain:

|un(t)| ≤ 1

µ2k
n

|ϕn| +
1

µ2k+2
n

|ψn| +
|pn|||q||
µ2k+2
n

[ k+1
2 ]−1∑
i=0

µ4i
n +
|pn|||q||
µ2k
n

[ k2 ]−1∑
i=0

µ4i
n +
|pn|||q||
µ2
n

T

≤ 1

µ2k
n

|ϕn|+
1

µ2k+2
n

|ψn|+
||q|| |pn|
µ4
n − 1

(
µ4[ k+1

2 ]−2k−2
n + µ4[ k2 ]−2k

n

)
+
|pn| ||q||
µ2
n

T,

where

‖q‖ = max
0≤i≤k+1

{
max
t∈[0.T ]

|q(i)(t)|
}
.

Estimating the functions (2.8) and (2.9) for t ∈ [0, T ], we have inequalities (2.11) and (2.12).
Lemma 2.1 is proven. �

Formally, differentiating (2.1), we obtain the series:

uxxxx(x, t) =
∞∑
n=1

µ4
nun(t)Xn(x), (2.13)

∂ku(x, t)

∂tk
=
∞∑
n=1

u(k)
n (t)Xn(x), (2.14)

∂k+1u(x, t)

∂tk+1
=
∞∑
n=1

u(k+1)
n (t)Xn(x). (2.15)

Next, we need to prove the absolute and uniform convergence of the series (2.13)–(2.15).

Lemma 2.2. If the conditions:

ϕ(x) ∈ C2[0, 1], ϕ(3)(x) ∈ L2(0, 1), ϕ(j)(0) = ϕ(j)(1) = 0, j = 0, 2,

ψ(x) ∈ C[0, 1], ψ′(x) ∈ L2(0, 1), ψ(0) = ψ(1) = 0,

p(x) ∈ C2[0, 1], p(3)(x) ∈ L2(0, 1), p(j)(0) = p(j)(1) = 0, j = 0, 2,

are satisfied, then the representations:

ϕn = − 1

µ3
n

ϕ(3)
n , ψn =

1

µn
ψ′n, pn = − 1

µ3
n

p(3)
n , (2.16)

are valid, where

ϕ(3)
n =

√
2

∫ 1

0

ϕ(3)(x) cosµnxdx,

ψ′n =
√

2

∫ 1

0

ψ′(x) cosµnxdx,
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p(3)
n =

√
2

∫ 1

0

p(3)(x) cosµnxdx,

with the following estimates holding true :

∞∑
n=1

∣∣∣ϕ(3)
n

∣∣∣2 ≤ ∥∥∥ϕ(3)
∥∥∥2

L2(0,1)
,

∞∑
n=1

|ψ′n|
2 ≤ ‖ψ′‖2L2(0,1),

∞∑
n=1

∣∣∣pn(3)
∣∣∣2 ≤ ∥∥∥p(3)

∥∥∥2

L2(0,1)
. (2.17)

Proof. By integrating by parts ϕn and pn three times and ψn once, considering the conditions of
Lemma 2.1, we obtain the representations in (2.16). The inequalities in (2.17) are Bessel inequalities
for the coefficients of the Fourier series expansions of the functions ϕ(3)

n , ψ′n and p(3)
n in the cosine

system on the interval [0, 1].
Lemma 3.1 is completely proven. �

Theorem 2.3. Let q(t) ∈ Ck+1[0, T ] and the functions ϕ(x), ψ(x), p(x) satisfy the assumptions of
Lemma 3.1, then there exists a unique solution of problem (1.1)-(1.3), that can be represented by the
series (2.1) with the coefficients given by relation (2.7).

Proof. The series (2.1), (2.13), (2.14) and (2.15) for any (x, t) ∈ D are majorized by the following
numerical series:

∞∑
n=1

(
1

µ2k
n

|ϕn|+
1

µ2k+2
n

|ψn|+
||q|| |pn|
µ4
n − 1

(
µ4[ k+1

2 ]−2k−2
n + µ4[ k2 ]−2k

n

)
+
|pn|||q||
µ2
n

T

)
,

∞∑
n=1

(
1

µ2k−4
n

|ϕn|+
1

µ2k−2
n

|ψn|+
|pn|‖q‖
µ4
n − 1

(
µ4[ k+1

2 ]−2k+2
n + µ4[ k2 ]−2k+4

n

)
+ µ2

n|pn|‖q‖T
)
,

∞∑
n=1

(
|ϕn| +

1

µ2
n

|ψn|+
|pn| ||q||
µ2
n

T

)
,

∞∑
n=1

(
µ2
n |ϕn| + |ψn|+

pn||q||
µ2
n

(1 + T )

)
.

If the functions ϕ(x), ψ(x) and p(x) satisfy the conditions of lemma 3.1, then by virtue of the represen-
tations (2.16) and (2.17) the series (2.1), (2.13), (2.14) and (2.15) converge uniformly in the rectangle
D, hence the function u(x, t) satisfies relations (1.1)–(1.3). Here, the following estimates hold true :

|u(x, t)| ≤ C1

(
‖ϕ‖L2(0,1) + ‖ψ‖L2(0,1) + ‖q‖ ‖p‖L2(0,1)

)
,

|uxxxx(x, t)| ≤ C2

(
‖ϕ′‖L2(0,1)

+ ‖ψ‖L2(0,1) + ‖q‖
∥∥∥p(3)

∥∥∥
L2(0,1)

)
,∣∣∣∣∂ku(x, t)

∂tk

∣∣∣∣ ≤ C3

(
‖ϕ′‖L2(0,1) + ‖ψ‖L2(0,1) + ‖q‖ ‖p‖L2(0,1)

)
,∣∣∣∣∂k+1u(x, t)

∂tk+1

∣∣∣∣ ≤ C4

(∥∥∥ϕ(3)
∥∥∥
L2(0,1)

+ ‖ψ′‖L2(0,1) + ‖q‖ ‖p‖L2(0,1)

)
.

Ci, i = 1, 5 are positive constants here and throughout the following.
Uniqueness. Assume that the given problem has two solutions, u1(x, t) and u2(x, t). We will prove

that u(t) = u1(t) − u2(t) = 0. By utilizing the linearity of the problem’s conditions for determining
u(x, t), we have the equation:
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∂2u

∂t2
+
∂4u

∂x4
= 0, (2.18)

∂ku

∂tk
(x, 0) = 0,

∂k+1u

∂tk+1
(x, 0) = 0, 0 ≤ x ≤ 1. (2.19)

Let u(x, t) be a solution to this problem. Then, from the problem (2.18)–(2.19), we have:

u′′n(t) + µ4
n un(t) = 0,

u(k)
n (t)

∣∣
t=0

= 0, u(k+1)
n (t)

∣∣
t=0

= 0.

It follows that un = 0 for all n ∈ N . From the completeness of the eigenfunction system. Xn(x) we
conclude that u(x, t) = 0.

Theorem 2.3 is completely proven. �

Now, we establish the stability of the solution of the problem posed under perturbations of the
initial data ϕ(x) and ψ(x) and the right-hand side p(x)q(t). Let us derive an estimate for the norm of
the difference between the solution of problem (1.1)- (1.3) and the solution ũn(t) of the problem with

perturbed functions ϕ̃n, ψ̃n, p̃n and q̃(t). Let ũn(t) be the solution of this problem corresponding to

the functions ϕ̃n, ψ̃n, p̃n and q̃(t), then ũn(t) has the form:

ũn(t) =
ϕ̃n
µ2k
n

cos

(
µ2
nt−

πk

2

)
+

ψ̃n
µ2k+2
n

sin

(
µ2
nt−

πk

2

)

−
[ k+1

2 ]−1∑
i=0

(−1)
i
µ4i−2k−2
n p̃nq̃

(k−1−2i)(0) sin

(
µ2
nt−

πk

2

)

−
[ k2 ]−1∑
i=0

(−1)
i
µ4i−2k
n p̃nq̃

(k−2−2i)(0) cos

(
πk

2
− µ2

nt

)
+
p̃n
µ2
n

∫ t

0

q̃(t− τ) sinµ2
nτdτ . (2.20)

Composing the difference un(t) − ũn(t) with the help of equations (2.7), (2.20) and introducing

the notation u(t) = un(t) − ũn(t), ϕ(t) = ϕn(t) − ϕ̃n(t), ψ(t) = ψn(t) − ψ̃n(t), pn = pn − p̃n and
q(t) = q(t)− q̃(t), we obtain the next formula:

un(t) =
ϕn
µ2k
n

cos

(
µ2
nt−

πk

2

)
+

ψn
µ2k+2
n

sin

(
µ2
nt−

πk

2

)

−
[ k+1

2 ]−1∑
i=0

(−1)
i
µ4i−2k−2
n

(
pnq

(k−1−2i) − p̃nq̃(k−1−2i)(0)
)

sin

(
µ2
nt−

πk

2

)

−
[ k2 ]−1∑
i=0

(−1)
i
µ4i−2k
n

(
pnq

(k−2−2i) − p̃nq̃(k−2−2i)(0)
)

cos

(
µ2
nt−

πk

2

)

+
1

µ2
n

∫ t

0

(pnq(t− τ)− pnq(t− τ)) sinµ2
nτdτ .

Using the next formula

pnq(t)− p̃nq̃(t) = pnq(t) + p̃nq(t)− p̃nq(t)− p̃nq̃(t)
= q(t) (pn − p̃n) + p̃n (q(t)− q̃(t)) = q(t)pn + p̃nq(t),

we obtain

un(t) =
ϕn
µ2k
n

cos

(
µ2
nt−

πk

2

)
+

ψn
µ2k+2
n

sin

(
µ2
nt−

πk

2

)
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−
[ k+1

2 ]−1∑
i=0

(−1)
i
µ4i−2k−2
n pnq

(k−1−2i)(0) sin

(
µ2
nt−

πk

2

)

−
[ k+1

2 ]−1∑
i=0

(−1)
i
µ4i−2k−2
n p̃nq

(k−1−2i)(0) sin

(
µ2
nt−

πk

2

)

−
[ k2 ]−1∑
i=0

(−1)
i
µ4i−2k
n pnq

(k−2−2i)(0) cos

(
µ2
nt−

πk

2

)

−
[ k2 ]−1∑
i=0

(−1)
i
µ4i−2k
n p̃nq

(k−2−2i)(0) cos

(
µ2
nt−

πk

2

)

+
pn
µ2
n

∫ T

0

q(t− τ) sinµ2
nτdτ +

p̃n
µ2
n

∫ T

0

q(t− τ) sinµ2
nτdτ .

From the previous expression, applying Lemma 3.1, we obtain the following estimate:

|u(t)| ≤ C5

(
‖ϕ‖L2(0,1) +

∥∥ψ∥∥
L2(0,1)

+ ‖p ‖L2(0,1)||q||+ ‖p̃ n‖L2(0,1) ‖q‖
)
.

3. Study of the inverse problem

The main result of this work is the following statement:
Substituting t = T , into equation (2.7), and using the additional condition (1.4), we obtain:

gn =
ϕn
µ2k
n

cos

(
µ2
nT −

πk

2

)
+

ψn
µ2k+2
n

sin

(
µ2
nT −

πk

2

)

−
[ k+1

2 ]−1∑
i=0

(−1)
i
µ4i−2k−2
n pnq

(k−1−2i)(0) sin

(
µ2
nT −

πk

2

)

−
[ k2 ]−1∑
i=0

(−1)
i
µ4i−2k
n pnq

(k−2−2i)(0) cos

(
µ2
nT −

πk

2

)
+
pn
µ2
n

∫ T

0

q(T − τ) sinµ2
nτdτ . (3.1)

where gn is defined as:

gn =
√

2

∫ 1

0

g(x) sinµnxdx.

From equation (3.1), we can express pnas:

pn =
1

Wn(T )

(
gn −

ϕn
µ2k
n

cos

(
µ2
nT −

πk

2

)
− ψn
µ2k+2
n

sin

(
µ2
nT −

πk

2

))
, (3.2)

where

Wn(T ) = −
[ k+1

2 ]−1∑
i=0

(−1)
i
µ4i−2k−2
n q(k−1−2i)(0) sin

(
µ2
nT −

πk

2

)

−
[ k2 ]−1∑
i=0

(−1)
i
µ4i−2k
n q(k−2−2i)(0) cos

(
µ2
nT −

πk

2

)
+

1

µ2
n

∫ T

0

q(T − τ) sinµ2
nτdτ . (3.3)

Thus, we can determine p(x) in the form of a series:

p(x) =
√

2
∞∑
n=1

1

Wn(T )

(
gn −

ϕn
µ2k
n

cos

(
µ2
nT −

πk

2

)
− ψn
µ2k+2
n

sin

(
µ2
nT −

πk

2

))
sinµnx. (3.4)
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Theorem 3.1. Let q(t) = 1, and the conditions of Theorem 2.3, are satisfied, additionally, the
following conditions hold:

W (T ) =
1

µ4
n

, g(x) ∈ C4[0, 1],

g(5)(x) ∈ L2(0, 1), g(j)(0) = g(j)(1) = 0, j = 0, 2, 4.,

then the representation

g(5)
n =

1

µ5
n

g(5)
n ,

where

g(5)
n =

√
2

∫ 1

0

g(5)(x) cosµnxdx,

holds, and the following series converges:

∞∑
n=1

∣∣∣g(5)
n

∣∣∣2 ≤ ∥∥∥g(5)
∥∥∥2

L2(0,1)
.

Thus, there exists a unique solution to the inverse problem defined by equations (1.1)-(1.4).

Proof. We analyze the zeros of the function Wn(T ) defined by equation (3.3).

Wn(T ) =

(
−q

(k−1)(0)

µ2k+2
n

+
q(k−3)(0)

µ2k−2
n

− q(k−5)(0)

µ2k−6
n

· · ·+ (−1)[ k+1
2 ] q(0)

µ4
n

)
sin

(
µ2
nT −

πk

2

)

−
(
q(k−2)(0)

µ2k
n

− q(k−4)(0)

µ2k−4
n

+
q(k−6)(0)

µ2k−8
n

· · ·+ (−1)[ k2 ]−1 q
′(0)

µ6
n

)
cos

(
µ2
nT −

πk

2

)

+
1

µ2
n

∫ T

0

q(T − τ) sinµ2
nτdτ ,

if k is odd number

Wn(T ) =

(
−q

(k−1)(0)

µ2k+2
n

+
q(k−3)(0)

µ2k−2
n

− q(k−5)(0)

µ2k−6
n

· · ·+ (−1)[ k+1
2 ] q

′(0)

µ6
n

)
sin

(
µ2
nT −

πk

2

)

−
(
q(k−2)(0)

µ2k
n

− q(k−4)(0)

µ2k−4
n

+
q(k−6)(0)

µ2k−8
n

· · ·+ (−1)[ k2 ]−1 q(0)

µ4
n

)
cos

(
µ2
nT −

πk

2

)

+
1

µ2
n

∫ T

0

q(T − τ) sinµ2
nτdτ ,

if k is even number. Let q(t) = 1, and considering that ∀n ∈ N, ∀T > 0, we have the following results:

Wn(T ) =
(−1)[ k+1

2 ]

µ4
n

sin

(
µ2
nT −

πk

2

)
+

1

µ2
n

∫ T

0

sinµ2
nτdτ ,

if k is odd number,

Wn(T ) =
(−1)[ k2 ]

µ4
n

cos

(
µ2
nT −

πk

2

)
+

1

µ2
n

∫ T

0

sinµ2
nτdτ ,

if k is even number.
We get the same result for even and odd values of k,

Wn(T ) =
cosµ2

nT

µ4
n

+
1

µ2
n

∫ T

0

sinµ2
nτdτ =

1

µ4
n

.
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Next, we prove the existence of the solution to the inverse problem defined by equations (1.1)(1.4)
expressed in (3.4). The series (3.4) for any (x, t) ∈ D are majorized by the following numerical series:

∞∑
n=1

∣∣µ4
n

∣∣ (|gn|+ ∣∣∣∣ ϕnµ2k
n

∣∣∣∣+

∣∣∣∣ ψn
µ2k+2
n

∣∣∣∣) .
Applying the conditions of Theorem 3.1, we obtain the following estimate:

|P (x)| ≤ C5

( ∥∥∥g(5)
∥∥∥
L2(0,1)

+ ‖ϕ′‖L2(0,1) + ‖ψ‖L2(0,1)

)
. (3.5)

�

Theorem 3.1 is completely proved.

3.1. Conclusion. This article studies the inverse problem related to determining the right-hand side
of a fourth-order differential equation. To represent the solution of the direct problem, a fundamental
solution of this equation was constructed, and its properties were analyzed. Sufficient conditions for
the existence of a solution to the direct problem were derived, which were then used in the investigation
of the inverse problem. Results on local existence and global uniqueness of the solution were proven,
and conditional stability estimates for the obtained solutions were provided.
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Abstract. In this paper, hypergeometric function of Lauricella F
(n)
A has been investigated. The

new properties of which are established and applied to the solution of the Dirichlet problem for the
three-dimensional degenerate elliptic equation. Fundamental solutions of the named equation are
expressed through the Lauricella hypergeometric function in three variables and an explicit solution
of the Dirichlet problem in the first octant is written out through the Appell hypergeometric function
F2. A limit theorem for calculating the value of a function of many variables is proved, and formulas
for their transformation are established. These results are used to determine the order of singularity of
fundamental solutions and to prove the truth of the solution to the Dirichlet problem. The uniqueness
of the solution to the Dirichlet problem is proved by the extremum principle for elliptic equations.

Keywords: Appell and Lauricella hypergeometric functions, three-dimensional degenerate elliptic
equation, PDE-systems of hypergeometric type, fundamental solution, Dirichlet problem
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1. Introduction

It is known, that a special functions are used for solving many problems of mathematical physics (see
[4, 18]). These include the Gauss hypergeometric series, Bessel and Hermite functions, Lauricella hy-
pergeometric functions, etc. The Hermite functions are actively applied in algorithms and information
systems that are used in medical diagnostics [16]. The Bessel functions are used in solving a number of
problems of hydrodynamics, radiophysics, and thermal conductivity [14, Part 2]. Some functions that
are used in astronomy can be arranged in hypergeometric series [20, Chapter 3]. Multidimensional
hypergeometric functions are used in the superstrings theory [5].

The study of boundary value problems for degenerate equations is one of the important directions of
the modern theory of partial differential equations. It is known that in the formulation and construc-
tion of local and nonlocal boundary value problems solutions, the main role is played by fundamental
solutions. Fundamental solutions of the two-dimensional degenerate elliptic equations are expressed
by the Appell function F2, and when the dimension of the equation exceeds two – by the Lauricella

hypergeometric function F
(n)
A with three and more variables.

In this work, the established properties of the Lauricella function are applied to solving the Dirichlet
problem for the three-dimensional degenerate elliptic equation

ymzkuxx + xnzkuyy + xnymuzz = 0,m > 0, n > 0, k > 0 (1.1)

in the domain Ω = {(x, y, z) : x > 0, y > 0, z > 0}.
A degenerate elliptic equation (1.1) is related to an elliptic equation with the singular coefficients

uxx + uyy + uzz +
2α

x
ux +

2β

y
uy +

2γ

z
uz = 0, 0 < 2α, 2β, 2γ < 1. (1.2)

Namely, if in the region of ellipticity the equation (1.1) is reduced to a canonical form, then we obtain
equation (1.2). Using the fundamental solutions constructed in [9], the main boundary value problems
for the equation (1.2) in the finite (first octant of the ball) were solved in explicit forms [10, 11, 22], and
local and nonlocal boundary value problems for the equation (1.2) by the Fourier method in special
infinite domains were investigated [12, 13].

Few works are devoted to the study of boundary value problems for the two-dimensional analogue
of the equation (1.1). In works [1, 19], for the two-dimensional degenerate elliptic equation

ymuxx + xnuyy = 0,m > 0, n > 0
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solutions of the Dirichlet and Neumann problems in the bounded and unbounded domains were found
in explicit forms.

2. Multiple hypergeometric functions and their some new properties

The Gauss hypergeometric function can be represented by the following series [6, p.56, Eq. 2.1(2)]

F (a, b; c;x) =
∞∑
m=0

(a)m (b)m
(c)m

xm

m!
, |x| < 1, (2.1)

where (z)n is a Pochhammer symbol: (z)n = z(z + 1)...(z + n− 1), n = 1, 2, ...; (z)0 = 1.
The great success of the theory of hypergeometric function in one variable has stimulated the

development of corresponding theory in two or more variables. Appell [2] has defined four functions
F1 to F4, which are all analogues to Gauss’ F (a, b; c;x). For instance, the Appell function F2 has a
form

F2

[
a, b1, b2;
c1, c2;

x, y

]
=

∞∑
m,n=0

(a)m+n (b1)m (b2)n
(c1)m (c2)n

xm

m!

yn

n!
, |x|+ |y| < 1, (2.2)

which satisfies the following system of partial differential equations [6, p. 234, Eq. 5.9(10)]:{
x(1− x)uxx − xyuxy + [c1 − (a+ b1 + 1)x]ux−b1yuy − ab1u = 0,

y(1− y)uyy − xyuxy − b2xux+ [c2 − (a+ b2 + 1) y]uy − ab2u = 0.
(2.3)

Lauricella hypergeometric function[15] (see also [21, p. 33])

F
(n)
A

[
a,b;
c;

x

]
=

∞∑
|k|=0

(a)|k|

n∏
i=1

(bi)ki
(ci)ki

xkii
ki!

, |x1|+ ...+ |xn| < 1

is a natural generalization of the classical Gauss hypergeometric function (2.1) and the Appell function
(2.2) to the case of many complex variables and their corresponding complex parameters. Hereinafter

b := (b1, ..., bn) , c := (c1, ..., cn) , x := (x1, ..., xn) ,

k := (k1, ..., kn) , |k| := k1 + ...+ kn, k1 ≥ 0, ..., kn ≥ 0.

Let us list some properties of the Lauricella hypergeometric function F
(n)
A :

1) tranformation formula [3, p. 116, Eq. (9)]:

F
(n)
A

[
a,b;
c;

x

]
= (1−X)

−a
F

(n)
A

[
a, c− b;

c;
x

X − 1

]
, X :=

n∑
j=1

xj; (2.4)

2) differentation formula:

∂

∂xk
F

(n)
A

[
a,b;
c;

x

]
=
abk
ck
F

(n)
A

[
a+ 1,bk + 1;

ck + 1;
x

]
, (2.5)

where the vectors bk + 1 and ck + 1 appear, the k-th component of which is one greater than the
corresponding components of the vectors b and c, respectively:

bk + 1 := (b1, ..., bk−1, bk + 1, bk+1, ..., bn) , ck + 1 := (c1, ..., ck−1, ck + 1, ck+1, ..., cn) , k = 1, n.

The Lauricella hypergeometric function of n variables satisfies the system with n equations
and this system has 2n linearly independent solutions (for details, see [3, pp. 117, 118]). In
our further studies, we use the following system corresponding to a function of three variables

u = F
(3)
A

[
a, b1, b2, b3;
c1, c2, c3;

x, y, z

]
:
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
x(1− x)uxx − xyuxy − xzuxz + [c1 − (a+ b1 + 1)x]ux − b1yuy − b1zuz − ab1u = 0,
y(1− y)uyy − xyuxy − yzuyz − b2xux + [c2 − (a+ b2 + 1)y]uy − b2zuz − ab2u = 0,
z(1− z)uzz − xzuxz − yzuyz − b3xux − b3yuy + [c3 − (a+ b3 + 1)z]uz − ab3u = 0.

(2.6)

The PDE-system (2.6) has 8 linearly independent solutions [3, pp. 117, 118] :

1

{
F

(3)
A

[
a, b1, b2, b3;
c1, c2, c3;

x, y, z

]
, (2.7)

3



x1−c1F
(3)
A

[
a+ 1− c1, b1 + 1− c1, b2, b3;

2− c1, c2, c3;
x, y, z

]
,

y1−c2F
(3)
A

[
a+ 1− c2, b1, b2 + 1− c2, b3;

c1, 2− c2, c3;
x, y, z

]
,

z1−c3F
(3)
A

[
a+ 1− c3, b1, b2, b3 + 1− c3;

c1, c2, 2− c3;
x, y, z

]
,

(2.8)

3



x1−c1y1−c2F
(3)
A

[
a+ 2− c1 − c2, b1 + 1− c1, b2 + 1− c2, b3;

2− c1, 2− c2, c3;
x, y, z

]
,

y1−c2z1−c3F
(3)
A

[
a+ 2− c2 − c3, b1, b2 + 1− c2, b3 + 1− c3;

c1, 2− c2, 2− c3;
x, y, z

]
,

x1−c1z1−c3F
(3)
A

[
a+ 2− c1 − c3, b1 + 1− c1, b2, b3 + 1− c3;

2− c1, c2, 2− c3;
x, y, z

]
,

(2.9)

1

{
x1−c1y1−c2z1−c3F

(3)
A

[
a+ 3− c1 − c2 − c3, b1 + 1− c1, b2 + 1− c2, b3 + 1− c3;

2− c1, 2− c2, 2− c3;
x, y, z

]
. (2.10)

It can also be shown by direct calculations that the functions (2.7) – (2.10) satisfy the system (2.6).

3. Fundamental solutions of a degenerate three-dimensional elliptic equation

Let (x, y, z) and (ξ, η, ζ) be two points of the domain Ω. We are looking for a solution of the
equation (1.1) in the form

u = r−2α−2β−2γ−1ω (ρ, σ, θ) , (3.1)

where ω is a new unknown function,

α =
n

2 (n+ 2)
, β =

m

2 (m+ 2)
, γ =

k

2 (k + 2)
; q =

n+ 2

2
, p =

m+ 2

2
, l =

k + 2

2
;

ρ = −4xqξq

q2r2
, σ = −4ypηp

p2r2
, θ = −4zlζ l

l2r2
, r2 =

1

q2
(xq − ξq)2

+
1

p2
(yp − ηp)2

+
1

l2
(
zl − ζ l

)2
.

It is obvious that

0 < 2α < 1, 0 < 2β < 1, 0 < 2γ < 1; q > 1, p > 1, l > 1.

Substituting (3.1) into equation (1.1), we obtain a system of differential equations of hypergeometric
type

ρ (1− ρ)ωρρ − ρσωρσ − ρθωρθ+
+
[
2α−

(
2α+ β + γ + 3

2

)
ρ
]
ωρ − ασωσ − αθωθ − α

(
α+ β + γ + 1

2

)
ω = 0,

σ (1− σ)ωσσ − ρσωρσ − σθωσθ+
+
[
2β −

(
α+ 2β + γ + 3

2

)
σ
]
ωσ − βρωρ − βθωθ − β

(
α+ β + γ + 1

2

)
ω = 0,

θ (1− θ)ωθθ − ρθωρθ − σθωσθ+
+
[
2γ −

(
α+ β + 2γ + 3

2

)
θ
]
ωθ − γρωρ − γσωσ − γ

(
α+ β + γ + 1

2

)
ω = 0.

(3.2)

Comparing the system (3.2) with the system (2.6) which has 8 particular solutions, we obtain [9]

q0 (x, y, z; ξ, η, ζ) = k0r
−2α−2β−2γ−1F

(3)
A

[
1/2 + α+ β + γ, α, β, γ;

2α, 2β, 2γ;
ρ, σ, θ

]
, (3.3)
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q1 (x, y, z; ξ, η, ζ) = k1xξr
2α−2β−2γ−3F

(3)
A

[
3/2− α+ β + γ, 1− α, β, γ;

2− 2α, 2β, 2γ;
ρ, σ, θ

]
, (3.4)

q11 (x, y, z; ξ, η, ζ) = k11yηr
−2α+2β−2γ−3F

(3)
A

[
3/2 + α− β + γ, α, 1− β, γ;

2α, 2− 2β, 2γ;
ρ, σ, θ

]
, (3.5)

q12 (x, y, z; ξ, η, ζ) = k12zζr
−2α−2β+2γ−3F

(3)
A

[
3/2 + α+ β − γ, α, β, 1− γ;

2α, 2β, 2− 2γ;
ρ, σ, θ

]
, (3.6)

q2 (x, y, z; ξ, η, ζ) = k2xyξηr
2α+2β−2γ−5F

(3)
A

[
5/2− α− β + γ, 1− α, 1− β, γ;

2− 2α, 2− 2β, 2γ;
ρ, σ, θ

]
, (3.7)

q21 (x, y, z; ξ, η, ζ) = k21xzξζr
2α−2β+2γ−5F

(3)
A

[
5/2− α+ β − γ, 1− α, β, 1− γ;

2− 2α, 2β, 2− 2γ;
ρ, σ, θ

]
, (3.8)

q22 (x, y, z; ξ, η, ζ) = k22yzηζr
−2α+2β+2γ−5F

(3)
A

[
5/2 + α− β − γ, α, 1− β, 1− γ;

2α, 2− 2β, 2− 2γ;
ρ, σ, θ

]
, (3.9)

q3 (x, y, z; ξ, η, ζ) = k3xyzξηζr
2α+2β+2γ−7F

(3)
A

[
7/2− α− β − γ, 1− α, 1− β, 1− γ;

2− 2α, 2− 2β, 2− 2γ;
ρ, σ, θ

]
, (3.10)

where k0,..., k3 are constants, which are determined when solving boundary value problems for the
equation (1.1).

It is easy to see that the each of three particular solutions q1, q11 and q12 are symmetrical to each
other with respect to the numerical parameters of the Lauricella function. Hence, in further studies
there is no need to consider the functions q11 and q12, i.e. we omit them and study only the function
q1. Similar propositions can be made about the second trio of particular solutions q2, q21 and q22: we
study only q2, and omit the functions q21 and q22.

It is easy to see that the constructed functions q0, q1, q2 and q3 have the following properties:

∂

∂x
q0

∣∣∣∣
x=0

= 0,
∂

∂y
q0

∣∣∣∣
y=0

= 0,
∂

∂z
q0

∣∣∣∣
z=0

= 0; q1|x=0 = 0,
∂

∂y
q1

∣∣∣∣
y=0

= 0,
∂

∂z
q1

∣∣∣∣
z=0

= 0,

q2|x=0 = 0, q2|y=0 = 0,
∂

∂z
q2

∣∣∣∣
z=0

= 0; q3|x=0 = 0, q3|y=0 = 0, q3|z=0 = 0.

Note, these properties will be used in solving four (Neumann, two Dirichlet-Neumann and Dirichlet)
boundary value problems for the equation (1.1).

Lemma 3.1. If 0 < 2α, 2β, 2γ < 1, then every function qk (k = 0, 3) has a singularity of order
1

r
as

r → 0 .

Proof. To give an example, we consider function q0. The order of singularity of the remaining functions
is determined similarly.

In the case of three variables, the transformation formula (2.4) takes the form

F
(3)
A

[
a, b1, b2, b3;
c1, c2, c3;

x, y, z

]
= (1− x− y − z)−a×

× F (3)
A

[
a, c1 − b1, c2 − b2, c3 − b3;

c1, c2, c3;
x

x+ y + z − 1
,

y

x+ y + z − 1
,

z

x+ y + z − 1

]
. (3.11)

Using the transformation formula (3.11), the function q0 defined in (3.3) can be reduced to the form

q0 (x, y, z; ξ, η, ζ) =
1

r
· q∗0 (x, y, z; ξ, η, ζ) , (3.12)

where

q∗0 (x, y, z; ξ, η, ζ) = k0%
−2α−2β−2γF

(3)
A

[
α+ β + γ + 1/2, α, β, γ;

2α, 2β, 2γ;
4xqξq

q2%2
,
4ypηp

p2%2
,
4zlζ l

l2%2

]
, (3.13)
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%2 =
1

q2
(xq + ξq)

2
+

1

p2
(yp + ηp)

2
+

1

l2
(
zl + ζ l

)2
.

We must show that the value of q∗0 (x, y, z; ξ, η, ζ) as r → 0, i.e. x→ ξ, y → η, z → ζ, is bounded.
According to the theory of Lauricella hypergeometric functions [3, Chap. VII], if the sum of the

absolute values of the variables is less than one, then the function F
(n)
A is bounded for any values of

the numerical parameters. In the case of three variables, this statement looks like∣∣∣∣F (3)
A

[
a, b1, b2, b3;
c1, c2, c3;

x, y, z

]∣∣∣∣ <∞, |x|+ |y|+ |z| < 1. (3.14)

By virtue of (3.14), it is obvious that in (3.13):

4xqξq

q2%2
+

4ypηp

p2%2
+

4zlζ l

l2%2
< 1,

therefore the following inequality is true

|q∗0 (x, y, z; ξ, η, ζ)| ≤ C

R2α+2β+2γ
, r → 0, (3.15)

where C = const > 0 and

R2 =
1

q2
x2q +

1

p2
y2p +

1

l2
z2l. (3.16)

Now from (3.12) and (3.15) follows that the function q0 has a singularity of order
1

r
as r → 0. The

Lemma 3.1 is proved. �

Based on the Lemma 3.1, we conclude that the particular solutions defined in (3.3) – (3.10) are
fundamental solutions of the equation (1.1).

4. Statement of the Dirichlet problem and the uniqueness theorem

Dirichlet problem. Find a solution u (x, y, z) of the equation (1.1) with the regularity C
(
Ω
)⋂

C2 (Ω)
that satisfies the conditions

u (x, y, z)|z=0 = τ1 (x, y) , 0 ≤ x, y <∞, (4.1)

u (x, y, z)|y=0 = τ2 (x, z) , 0 ≤ x, z <∞, (4.2)

u (x, y, z)|x=0 = τ3 (y, z) , 0 ≤ y, z <∞, (4.3)

lim
R→∞

u (x, y, z) = 0, (4.4)

where Ω = {(x, y, z) : x ≥ 0, y ≥ 0, z ≥ 0} ; R is defined in (3.16); τ1 (y, z) , τ2 (x, z) , τ3 (x, y) are given
continuous functions in a closed domain and have representations

τ1 (x, y) =
τ̃1 (x, y)(

1 + 1
q2x2q + 1

p2 y2p
)ε1 , τ̃1(x, y) ∈ C(0 ≤ x, y <∞), (4.5)

τ2 (x, z) =
τ̃2 (x, z)(

1 + 1
q2x2q + 1

l2
z2l
)ε2 , τ̃2(x, z) ∈ C(0 ≤ x, z <∞), (4.6)

τ3 (y, z) =
τ̃3 (y, z)(

1 + 1
p2 y2p + 1

l2
z2l
)ε3 , τ̃3(y, z) ∈ C(0 ≤ y, z <∞), (4.7)

where ε1, ε2, ε3 are a real numbers with α+ β + γ < ε1, ε2, ε3 < 2.
In addition, the functions τ1(x, y), τ2(x, z) and τ3(y, z) satisfy the matching conditions at the origin:

τ1(0, 0) = τ2(0, 0) = τ3(0, 0) and at the lateral edges of the domain Ω:

τ1(x, 0) = τ2(x, 0), τ1(0, y) = τ3(y, 0), τ2(0, z) = τ3(0, z), x, y, z ∈ Ω.
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Theorem 4.1. The Dirichlet problem can have at most one solution.

Proof. To prove Theorem 4.1, it suffices to show that the corresponding homogeneous Dirichlet problem
has a trivial solution. For this purpose, the finite part of the domain Ω, bounded by the planes
x = 0, y = 0, z = 0 and the sphere σ0 :

1

q2
x2q +

1

p2
y2p +

1

l2
z2l = R2, x > 0, y > 0, z > 0,

we denote by ΩR. Let
τ1 (y, z) = τ2 (x, z) = τ3 (x, y) = 0. (4.8)

Then the validity of Theorem 4.1 follows from the extremum principle for elliptic equations [17, p. 12].
Indeed, the function u (x, y, z) in the domain Ω̄R, by virtue of (4.8), can reach its positive maximum
and negative minimum only at σ0.

Let (x, y, z) be an arbitrary point in DR. We take an arbitrary small number ε > 0 and, considering
(4.8), we choose R large enough that |u (x, y, z)| < ε on σ0. For R large enough, this point falls in DR

and therefore |u (x, y, z)| < ε. Since ε is arbitrary, we have u (x, y, z) = 0. Then u (x, y, z) ≡ 0 in D.
The Theorem 4.1 is proved. �

5. Existence of a solution to the Dirichlet problem

Consider a function

u (x, y, z) =

∞∫
0

∞∫
0

tnsmτ1 (t, s)
∂

∂ζ
q3 (x, y, z; t, s, ζ)

∣∣∣∣
ζ=0

dtds+

+

∞∫
0

∞∫
0

tnskτ2 (t, s)
∂q3

∂η

∣∣∣∣
η=0

dtds+

∞∫
0

∞∫
0

tmskτ3 (t, s)
∂q3

∂ξ

∣∣∣∣
ξ=0

dtds, (5.1)

where q3 (x, y, z; ξ, η, ζ) is a fundamental solution defined in (3.10). Applying a differential formula
(2.5), from (5.1) we get the following function:

u (x, y, z) = u1 (x, y, z) + u2 (x, y, z) + u3 (x, y, z) , (5.2)

where

u1 (x, y, z) = k3xyz

∞∫
0

∞∫
0

τ1 (t, s) tn+1sm+1

r2δ
1

F2

[
δ, 1− α, 1− β;
2− 2α, 2− 2β;

− 4xqtq

q2r2
1

,−4ypsp

p2r2
1

]
dtds, (5.3)

u2 (x, y, z) = k3xyz

∞∫
0

∞∫
0

τ2 (t, s; ) tn+1sk+1

r2δ
2

F2

[
δ, 1− α, 1− γ;
2− 2α, 2− 2γ;

− 4xqtq

q2r2
2

,−4zlsl

l2r2
2

]
dtds, (5.4)

u3 (x, y, z) = k3xyz

∞∫
0

∞∫
0

τ3 (t, s; ) tm+1sk+1

r2δ
3

F2

[
δ, 1− β, 1− γ;
2− 2β, 2− 2γ;

− 4yptp

p2r2
3

,−4zlsl

l2r2
3

]
dtds, (5.5)

k3 =
1

2π
q−2+2αp−2+2βl−2+2γ Γ (1− α) Γ (1− β) Γ (1− γ) Γ (6− 2α− 2β − 2γ)

Γ (2− 2α) Γ (2− 2β) Γ (2− 2γ) Γ (3− α− β − γ)
, (5.6)

δ =
7

2
− α− β − γ; r2

1 =
1

q2
(xq − tq)2

+
1

p2
(yp − sp)2

+
1

l2
z2l,

r2
2 =

1

q2
(xq − tq)2

+
1

p2
y2p +

1

l2
(
zl − sl

)2
, r2

3 =
1

q2
x2q +

1

p2
(yp − tp)2

+
1

l2
(
zl − sl

)2
.

Here F2 is Appell hypergeometric function defined in (2.2).
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Lemma 5.1. If the function τ1(x, y) can be represented as (4.5), then the function u1 (x, y, z) defined
by equality (5.3) is a regular solution of equation (1.1) in the domain Ω satisfying the conditions (4.4)
and

u1(x, y, 0) = τ1(x, y), u1(x, 0, z) = 0, u1(0, y, z) = 0. (5.7)

Proof. First let us prove that the function (5.3) satisfies the degenerate elliptic equation (1.1). For
this purpose, we consider the auxiliary function

W (x, y, z; t, s) = xyzr−2δ
1 ω(ϑ, ς), (5.8)

where

ω(ϑ, ς) := F2

[
δ, 1− α, 1− β;
2− 2α, 2− 2β;

ϑ, ς

]
, ϑ = −4xt

r2
1

, ς = −4ys

r2
1

.

We calculate the necessary derivatives of the auxiliary function W with respect to the variables
x, y, z and substitute them into the degenerate elliptic equation (1.1). As a result, we obtain the
relation

ymzkWxx + xnzkWyy + xnymWzz =

= ϑyzr−2µ
1 {ϑ(1− ϑ)ωϑϑ − ϑςωϑς + [2(1− α)− (2− α+ δ)ϑ]ωϑ − (1− α)δω}

+xςzr−2µ
1 {ς(1− ς)ωςς − ϑςωϑς + [2(1− β)− (2− β + δ)ς]ως − (1− β)δω} = 0,

which is equivalent to the following system of hypergeometric equations{
ϑ(1− ϑ)ωϑϑ − ϑςωϑς + [2(1− α)− (2− α+ δ)ϑ]ωϑ − (1− α)δω = 0,

ς(1− ς)ωςς − ϑςωϑς + [2(1− β)− (2− β + δ)ς]ως − (1− β)δω = 0.

Comparing the last system of equations with the system of equations (2.3) for the Appell function F2,
we can conclude that the function (5.8) is a solution of the corresponding degenerate elliptic equation.
Consequently, the function u1(x, y, z) defined by (5.3) satisfies the degenerate elliptic equation (1.1).

Now we prove that the function u1(x, y, z) satisfies the boundary conditions (5.7). Indeed, intro-
ducing in the integrand in (5.3) instead of t and s new variables

µ =
l (tq − xq)

qzl
, ν =

l (sp − yp)
pzl

,

we obtain

u1 (x, y, z) = l2δ−2k3xyz
2l(α+β−2)

∞∫
−
lxq

qzl

∞∫
−
lyp

pzl

(
xq + µqzl/l

)(
yp + νqzl/l

)
(1 + µ2 + ν2)

δ
×

×F2

[
δ, 1− α, 1− β;
2− 2α, 2− 2β;

−
4l2xq

(
xq + µqzl/l

)
q2z2l (1 + µ2 + ν2)

,−
4l2yp

(
yp + νpzl/l

)
p2z2l (1 + µ2 + ν2)

]
×

×τ1

[(
xq + µqzl/l

)1/q
,
(
yp + νpzl/l

)1/p]
dµdν.

Taking the expression (5.6) into account for the coefficient k3, considering the well-known formula
for calculating the double improper integral [8, p. 633, Eq. 4.623]

∞∫
0

∞∫
0

ϕ
(
a2x2 + b2y2

)
dxdy =

π

4ab

∞∫
0

ϕ(x)dx

and Legendre’s duplication formula [6, p. 5, Eq. 1.2(15)],

Γ(2z) =
22z−1

√
π

Γ(z)Γ

(
z +

1

2

)
,
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we obtain
lim
z→0

u1 (x, y, z) = τ1 (x, y) . (5.9)

Using the similar transformations, we have

lim
x→0

u1 (x, y, z) = 0, lim
y→0

u1 (x, y, z) = 0. (5.10)

Therefore, based on equalities (5.9) and (5.10) we conclude that the function u1(x, y, z), defined by
(5.3), satisfies conditions (5.7).

Let us show that if given function τ1 has representation (4.5), then the function u1(x, y, z) defined
in (5.3) tends to zero at infinity.

Using the transformation formula for Appell function F2 [6, p. 240, Eq. 5.11(8)]

F2

[
a, b1, b2;
c1, c2;

x, y

]
= (1− x− y)−aF2

[
a, c1 − b1, c2 − b2;

c1, c2;
x

x+ y − 1
,

y

x+ y − 1

]
,

we write the function (5.3) in the form

u1 (x, y, z) = k3xyz

∞∫
0

∞∫
0

τ1 (t, s) tn+1sm+1

ρ2δ
F2

[
δ, 1− α, 1− β;
2− 2α, 2− 2β;

4xqtq

q2ρ2
,
4ypsp

p2ρ2

]
dtds, (5.11)

where

ρ2 =
1

q2
(xq + tq)

2
+

1

p2
(yp + sp)

2
+

1

l2
z2l.

It is easy to see that in (5.11) the following inequality holds

4xqtq

q2ρ2
+

4ypsp

p2ρ2
< 1, x > 0, y > 0, z > 0, t > 0, s > 0.

Let us prove that when the point (x, y, z) tends to infinity, i.e. when R → ∞, the function (5.11)
tends to zero. It known from the theory of Appell functions [2], that, if |x| + |y| < 1, then for any
values of the numerical parameters the Appell hypergeometric function F2 is bounded:

| F2 (a, b1, b2; c1, c2;x, y) |≤ C1, |x|+ |y| < 1.

Next, applying the representation (4.5) for given function τ1(x, y), we obtain

|u1| ≤ C2xyz

∞∫
0

∞∫
0

tn+1sm+1dtds(
1 + 1

q2 t2q + 1
p2 s2p

)ε1 [
1
q2 (xq + tq)

2
+ 1

p2 (yp + sp)
2

+ 1
l2
z2l
]7/2−α−β−γ . (5.12)

Substituting t and s for

µ =
1

qR
tq, ν =

1

pR
sp

in the last double improper integral (5.12), we get

|u1| ≤
qpC3

R2ε1−2α−2β−2γ
· x
R
· y
R
· z
R
·K (x, y;R) , (5.13)

where ε1 > α+ β + γ (see condition in (4.5) ) and

K (x, y;R) =

∞∫
0

∞∫
0

µνdµdν(
µ2 + ν2 + 1

R2

)ε1 (
1 + µ2 + ν2 + 2xq

qR
+ 2yp

pR

)7/2−α−β−γ . (5.14)

It is easy to show that the double improper integral on the right-hand side (5.14) is bounded as
R→∞. Indeed, using the formula [7]
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+∞∫
0

...

+∞∫
0︸ ︷︷ ︸

n

xp1−1
1 ...xpn−1

n dx1...dxn

[(r1x1)
q1 + ...+ (rnxn)

qn ]
t
[1 + (r1x1)

q1 + ...+ (rnxn)
qn ]

s =

=
Γ (p1/q1) ...Γ (pn/qn) Γ (P − t) Γ (s+ t− P )

q1q2...qnr
p1q1
1 ...rpnqnn Γ (P ) Γ (s)

, P :=
p1

q1

+ ...+
pn
qn
,

where pk, qk, rk and s are positive numbers (k = 1, n), 0 < P − t < s , and passing in (5.14) to the
limit as R→∞, we obtain

lim
R→∞

K (x, y;R) =
Γ (2− ε1) Γ (3/2− α− β − γ + ε1)

4Γ (7/2− α− β − γ)
, α+ β + γ < ε1 < 2. (5.15)

Thus, by virtue of (5.13) and (5.15) the following estimate is valid:

|u1| ≤
C4

R2(ε1−α−β−γ)
, α+ β + γ < ε1 < 2, R→∞. (5.16)

Considering (5.16), we conclude that the function (5.3) vanishes at infinity. Lemma 5.1 is proved. �

Remark 5.2. Repeating the arguments given in Lemma 5.1, one can prove two lemmas concerning
the functions u2(x, y, z) and u3(x, y, z) defined by equalities (5.4) and (5.5), respectively. Thus, if the
representations (4.6) and (4.7) are valid for the given functions τ2(x, z) and τ3(y, z), then each of the
functions u2(x, y, z) and u3(x, y, z) is a solution to the degenerate elliptic equation (1.1) that vanishes
at infinity and satisfies the set of conditions

u2(x, y, 0) = 0, u2(x, 0, z) = τ2(x, z), u2(0, y, z) = 0,

u3(x, y, 0) = 0, u3(x, 0, z) = 0, u3(0, y, z) = τ3(y, z),

respectively.

Theorem 5.3. If given functions τ1(x, y), τ2(x, z) and τ3(y, z) have the representations (4.5), (4.6)
and (4.7), respectively, then the function u(x, y, z) defined in (5.2) is a regular solution of the equation
(1.1) in the domain Ω satisfying the conditions (4.1) – (4.4).

Proof of Theorem 5.3 follows from Lemma 5.1 and Remark 5.2.
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[6] Erdélyi A., Magnus W., Oberhettinger F., Tricomi F. G. Higher Transcendental Functions 1, McGraw-
Hill, New York, Toronto, London. – 1953.

[7] Ergashev T. G., Tulakova Z. R. The Neumann problem for a multidimensional elliptic equation with
several singular coefficients in an infinite domain. Lobachevskii Journal of Mathematics,– 2022. – 43(1). –
P. 199 – 206.

[8] Gradshteyn I. S., Ryzhik I. M Table of integrals, series, and products Academic Press Amsterdam. – 2007.



82 Hasanov A., Ergashev T.G., Djuraev N.

[9] Hasanov A., Karimov E. T. Fundamental solutions for a class of three-dimensional elliptic equations with
singular coefficients. Applied Mathematics Letters,– 2009. – 22. – P. 1828 – 1832.

[10] Karimov E.T. A boundary value problem for 3D elliptic equation with singular coefficients. Progress in
analysis and its applications, – 2010. P. 619 – 625.

[11] Karimov E. T. On the Dirichlet problem for a three-dimensional elliptic equation with singular coefficients.
Dokl.AN Uz, – 2010. – 2. – P. 9 – 11.

[12] Karimov K. T. Nonlocal problem for an elliptic equation with singular coefficients in a semi-infinite
parallelepiped. Lobachevskii Journal of Mathematics, 2020. – 41(1). – P. 46 – 57.

[13] Karimov K. T. Boundary value problems in a semi-infinite parallelepiped for an elliptic equation with
three singular coefficients. Lobachevskii Journal of Mathematics, – 2021.– 42(3).– P. 560 – 571.

[14] Korenev B.G. Introduction to the theory of Bessel functions. Nauka, Moscow, 1971 (in Russian).

[15] Lauricella G. Sulle funzioni ipergeometriche a piu variabili Rend. Circ. Mat. Palermo, – 1893. – 7. – P.
111 – 158.

[16] Mamayev N.V., Lukin A.S., Yurin D.V., Glazkova M.A., Sinitsin V.E. Algorithm of nonlocal mean based
on decompositions via Hermite functions in problems of computer tomography. Proceedings of the 23rd
Inter. Conf. on Comp. Graphics and Vision GraphiCon2013, Vladivostok, Russia. (2013) Sept 1620, P.
254–258 (in Russian).

[17] Miranda C. Partial Differential Equations of Elliptic Type Berlin Springer. – 1970.

[18] Niukkanen A. W. Generalised hypergeometric series arising in physical and quantum chemical applications.
J. Phys. A: Math. Gen., – 1983. – 16.– P. 1813 – 1825.

[19] Salakhitdinov M. C., Hasanov A. Tricomi problem for a mixed type equation with a non-smooth degeneracy
line. Diff. Uravn., – 1983. – 19(1).– P. 110–119.

[20] Smart U.M., Celestial mechanics. Longmans, Green and Co, London - New York - Toronto, 1953

[21] Srivastava H. M. Karlsson P. W. Multiple Gaussian hypergeometric series New York, Chichester, Brisbane
and Toronto Halsted Press (Ellis Horwood Limited, Chichester), Wiley. – 1985.

[22] Tulakova Z.R. Spatial mixed problems and Neumann problem for the three-dimensional elliptic equation
with the two singular coefficients. Uzbek Math. Journal, – 2024. – 68(3). P. 150–157.

Hasanov A. ,
Department of Differential Equations and Applica-
tions, V.I.Romanovskiy Institute of Mathematics,
Uzbekistan Academy of Sciences, Tashkent, Uzbek-
istan
Department of Mathematics, Analysis, Logic and Dis-
crete Mathematics, Ghent University, Belgium
email: anvarhasanov@yahoo.com
Ergashev T.G. ,
Department of Differential Equations and Applica-
tions, V.I.Romanovskiy Institute of Mathematics,
Uzbekistan Academy of Sciences, Tashkent, Uzbek-
istan
Department of Higher Mathematics, National Re-
search University ”TIIAME” Tashkent, Uzbekistan
Department of Mathematics, Analysis, Logic and Dis-
crete Mathematics, Ghent University, Belgium
email: ergashev.tukhtasin@gmail.com
Djuraev N.,
Department of Higher Mathematics, Karshi Engineer-
ing Economics Institute, Karshi, Uzbekistan
email: norqul.djurayev@mail.ru



Optimal pursuit game of two pursuers ... 83

Uzbek Mathematical Journal
2025, Volume 69, Issue 3, pp.83-92
DOI: 10.29229/uzmj.2025-3-8

Optimal pursuit game of two pursuers and one evader with the
Grönwall type constraints on controls

Ibragimov G., Yusupov I.

Abstract. We study a differential game of two pursuers and one evader, whose dynamics are
described by linear differential equations, in Rn. The control functions of pursuers and evader are
subjected to the Grönwall type constraints. The game is said to be completed when the state of the
evader coincides with the state of any pursuer. The pursuers aim to complete game as soon as possible,
while the evader tries to either evade capture or prolong the time until capture. We construct optimal
strategies of players and find an equation for the optimal pursuit time.

Keywords: Differential game, Grönwall constraints, pursuer, evader, optimal pursuit time, optimal
strategy

MSC (2020): 91A23, 49N70, 49J15

1. Introduction

Isaacs used the concept of differential games for the first time [18]. Then many researchers such as
Azamov [2], Blagodatskikh [6], Pashkov et al. [21], Petrosjan [22], Pshenichnii [23], Subbotin [25] and
others developed differential games theory.

Differential games of many players are considered one of the most important current discussions
(see for example, [3, 7, 8, 9, 10, 12, 13, 14, 19, 20, 23, 26, 27, 28, 29]). Most of the literature considers
differential games when the pursuers move faster than the evader to complete the game. The paper
[8] is devoted to simultaneous multiple capture of the rigidly coordinated evaders by several pursuers.

Optimal pursuit-evasion games are another difficult and significant branch of differential games (for
instance, see [1], [5], [15, 16, 17, 20]). To construct optimal strategies for players and to find optimal
pursuit-evasion times are the main problems for such games. In paper [15], the optimal pursuit game
described by infinite system of differential equations is considered. The papers [16, 17] by Ibragimov,
investigate the optimal pursuit differential games of many pursuers. In the games, optimal strategies
of players were constructed.

The differential game problems are studied usually under geometric, integral and mixed constraints.
However, in the recent works on differential games, control functions are subjected to Grönwall type
constraints [1, 4, 24]. The papers by Samatov et al. [4, 24] were considered optimal pursuit-evasion
and ”Life line” differential games of a pursuer and an evader with Grönwall type constraints.

In the paper [1], a simple motion differential game of two pursuers and one evader is studied. The
players’ control functions are subject to the Gronwall-type constraints. While the present paper is
devoted to a linear differential game of optimal pursuit of two pursuers and one evader when the
control functions of players are subjected to Grönwall type constraints. We find optimal pursuit time
in terms of reachability sets and construct optimal strategies of players. To prove the main theorem,
we consider an auxiliary differential game in a half plane.

1.1. Statement of problem. Let the dynamics of two pursuers x1, x2 and one evader y be described
in Rn by the following differential equations:

ẋi = axi + ui, xi(0) = xi0, i = 1, 2,
ẏ = ay + v, y(0) = y0,

(1.1)

where xi, y, xi0, y0 ∈ Rn, ui and v stand for the control parameters of the i-th pursuer xi, i = 1, 2, and
evader y, respectively, a is given positive number.
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Definition 1.1. Measurable functions ui(t) = (ui1(t), ui2(t)) and v(t) = (v1(t), v2(t)), t ≥ 0, that
satisfy the following constraints

|ui(t)|2 ≤ ρi
2 + 2k

t∫
0

|ui(s)|2ds, t ≥ 0, (1.2)

|v(t)|2 ≤ σ2 + 2k

t∫
0

|v(s)|2ds, t ≥ 0, (1.3)

are called admissible controls of pursuers xi, i = 1, 2, and evader y, respectively, where ρ1, ρ2, σ
(ρi > σ i=1,2) and k are given positive numbers.

We let U1, U2 and V denote the set of all admissible controls of pursuers x1, x2, and evader y,
respectively.

The trajectories of pursuers and evader corresponding to admissible controls ui(·) and v(·) are
defined by the following equations

xi(t) = xi0e
at +

t∫
0

ea(t−s)ui(s)ds, i = 1, 2, y(t) = y0e
at +

t∫
0

ea(t−s)v(s)ds, (1.4)

respectively. We need the following statement.

Lemma 1.2. [11] If, for the positive numbers ρ and k,

|ω(t)|2 ≤ ρ2 + 2k

t∫
0

|ω(s)|2ds,

then |ω(t)| ≤ ρekt, where ω(t), t ≥ 0, is a measurable function.

By Lemma 1.2, for the admissible controls ui(·) ∈ U and v(·) ∈ V, we have

|ui(t)| ≤ ρiekt, |v(t)| ≤ σekt, t ≥ 0. (1.5)

It should be noted that (2.2) doesn’t imply (1.2) and (2.1). It is not difficult to verify that if

|ui(t)| = ρie
kt, |v(t)| = σekt, t ≥ 0, (1.6)

then equations (1.2) and (2.1) are satisfied, respectively.
Next, we give definitions for the optimal strategies of players and optimal pursuit time.

1.2. Guaranteed pursuit time. Let H(x, r) (respectively, S(x, r)) denote the ball (sphere) of radius
r and centered at x, and let O be the origin.

Definition 1.3. We call the function

Ui(xi0, y0, t, v), Ui : R2 × R2 × [0,∞)×H(O, σekt)→ H(O, ρie
kt), i ∈ {1, 2},

strategy of the pursuer xi, if for any v(·) ∈ V and for ui = Ui(xi0, y0, t, v(t)), the initial value problem
(1.1) has a unique solution (xi(t), y(t)), and

|Ui(xi0, y0, t, v(t))|2 ≤ ρ2
i + 2k

t∫
0

|Ui(xi0, y0, s, v(s))|2ds, t ≥ 0.

In other words, the pursuer xi uses information about the initial states xi0, y0, and the value of the
control parameter v(t) at the current time t.
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Definition 1.4. We say that the strategies Ui = Ui(xi0, y0, t, v(t)), i = 1, 2, ensures the completion
of the game for the time T (U1, U2) if, for any v(·) ∈ V, we have xi(τ) = y(τ) for some i ∈ {1, 2}
and τ ∈ [0, T (U1, U2)], where (x1(t), x2(t), y(t)) is the solution of initial value problem (1.1) with
ui = Ui(xi0, y0, t, v(t)), i = 1, 2.

We call the number T (U1, U2) a guaranteed pursuit time. It should be noted that any time T ′,
T ′ ≥ T (U1, U2), is also a guaranteed pursuit time corresponding to the same strategies U1, U2. Let
T ∗(U1, U2) denote the infimum of the numbers T (U1, U2) corresponding to the strategies U1, U2.

The pursuers try to minimize T ∗(U1, U2) by choosing their strategies U1, U2, and the evader
tries to maximize T ∗(U1, U2) by choosing v(·) ∈ V. If, for some strategies U10, U20 of pursuers,
inf
U1,U2

T ∗(U1, U2) = T ∗(U10, U20), then U10, U20 are called optimal strategies of pursuers and the number

T ∗(U10, U20) is called a guaranteed pursuit time in the game.

1.3. Guaranteed evasion time.

Definition 1.5. A continuous function

V (x10, x20, y0, t, x1, x2, y), V : R2 × R2 × R2 × [0,∞)× R2 × R2 × R2 → H(O, σekt),

is called a strategy of the evader if, for any ui(·) ∈ Ui, i = 1, 2, and for v = V (x10, x20, y0, t, x1, x2, y),
the initial value problem (1.1) has a unique solution (x1(t), x2(t), y(t)) and along this solution

|V (x10, x20, y0, t, x1(t), x2(t), y(t))|2 ≤ σ2 + 2k

t∫
0

|V (x10, x20, y0, s, x1(s), x2(s), y(s))|2ds, t ≥ 0.

Definition 1.6. We say that the strategy V guarantees the evasion on the interval of time [0, T (V ))
if, for any ui(·) ∈ Ui, i = 1, 2, we have xi(t) 6= y(t), for all i = 1, 2 and t ∈ [0, T (V )). We let T∗(V )
denote the supremum of the numbers T (V ) corresponding to the strategy V . Also, we call the number
T∗(V ) a guaranteed evasion time corresponding to the strategy V .

The evader tries to maximize the number T∗(V ) by choosing the strategy V , and the pursuers try
to minimize the number T∗(V ) by choosing the controls ui(·) ∈ Ui, i = 1, 2.

Definition 1.7. If for some strategy V0 of the evader sup
V
T∗(V ) = T∗(V0), then V0 is called optimal

strategy of the evader, and the number T∗(V0) is called a guaranteed evasion time in the game. If
T ∗(U10, U20) = T∗(V0), then this number is called optimal pursuit time in the game (1.1).

Problem. Construct optimal strategies U10, U20 of the pursuers and that V0 of evader, and find
the optimal pursuit time in game (1.1).

2. Main result

In this section, we demonstrate the main result of the paper.

Theorem 2.1. The number

θ = min
{
t ≥ 0 | H(y0e

at, r(t)) ⊂ H(x10e
at, R1(t)) ∪H(x20e

at, R2(t))
}

(2.1)

is the optimal pursuit time in game (1.1).

Let ξi = xi0 +
t∫

0

e−asu(s)ds and η = yi+
t∫

0

e−asv(s)ds. By (1.4) the equality ξi(t) = η(t) is equivalent

to xi(t) = y(t). Therefore, it is sufficient for us to show that ξi(t) = η(t). Therefore, we consider the
following game instead of (1.1):

ξ̇i = e−atui, ξi(0) = xi0, i = 1, 2,
η̇ = e−atv, η(0) = y0,

(2.2)
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where ξi, η, xi0, y0 ∈ R2, ui and v stand for the control parameters of the i-th pursuer ξi, i = 1, 2, and
evader η, respectively.

Let

Ri(t) = ρi

t∫
0

e(k−a)sds, i = 1, 2, r(t) = σ

t∫
0

e(k−a)sds.

It’s easy to establish that the set of all points the pursuer ξi (and respectively the evader η) can reach
from the starting point xi0 (respectively y0) at time t = 0 up to time t forms the ball H(xi0, Ri(t))
(and respectively, H(y0, r(t))).

2.1. A differential game in the half plane. To prove the theorem, we examine an auxiliary
differential game involving a single pursuer x and a single evader y, governed by the following equations:

ξ̇ = e−atu, ξ(0) = x0 = (x10, x20), |u(t)|2 ≤ ρ2 + 2k
t∫

0

|u(s)|2ds, t ≥ 0,

η̇ = e−atv, η(0) = y0 = (y10, y20), |v(t)|2 ≤ σ2 + 2k
t∫

0

|v(s)|2ds, t ≥ 0.
(2.3)

Assume that ρ > σ. Define R(t) = ρ
t∫

0

e(k−a)sds, and suppose the circumferences S(x0, R(θ0)) and

X
Γ

Figure 1. Game in the half plane X.

S(y0, r(θ0)) intersect for some θ0 > 0. We pass a straight line Γ perpendicular to the vector y0 − x0

through the intersection points of these circumferences (see Figure 1). We label the half-plane bounded
by Γ and containing the point x0 by X. Note that the half-plane X may not include the point y0. It
is assumed that the evader must be within the half-plane X at the time θ0, while the pursuer aims to
achieve the condition ξ(t) = η(t) as soon as possible.

Lemma 2.2. If the position of the evader y(θ0) belongs to X, then θ0 is the guaranteed pursuit time
in game (2.3).
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Proof. The pursuer uses following strategy

u = v − (v, e)e+ e
√

(ρ2 − σ2)e2kt + (v, e)2, e =
y0 − x0

|y0 − x0|
. (2.4)

We assume, without loss of generality, that X is the upper half-plane bounded by the x-axis.
Consequently, we have x10 = y10. It can be easily shown that

θ0 =
1

k − a
ln

(
1 + (k − a)

√
x2

20 − y2
20

ρ2 − σ2

)
.

Admissibility of strategy (3.1) can be easily verified from the obvious equation: |u(t)|2 =
(ρ2 − σ2) e2kt + |v(t)|2 and (1.2).

Since y0 − x0 is perpendicular to the x-axis, e = y0−x0

|y0−x0| = (0,−1), and consequently, strategy (3.1)

is simplified to the form

u1 = v1, u2 = −
√

(ρ2 − σ2) e2kt + v2
2. (2.5)

The condition η(θ0) ∈ X can be written as follows

θ0∫
0

e−asv2(s)ds ≥ −y20. (2.6)

By (3.2) u1(t) = v1(t), t ≥ 0, and hence ξ1(t) = η1(t), for all t ≥ 0. Therefore, it suffices to show
that ξ2(τ) = η2(τ) at some τ , 0 < τ ≤ θ0. To this end, we consider the following vector function
f(t) =

(√
ρ2 − σ2e(k−a)t, e−atv2(t)

)
, t ≥ 0. Then

ξ2(θ0)− η2(θ0) = x20 − y20 −
θ0∫

0

e−as
√

(ρ2 − σ2)e2ks + v2
2(s)ds−

θ0∫
0

e−asv2(s)ds

= x20 − y20 −
θ0∫

0

|f(s)|ds−
θ0∫

0

e−asv2(s)ds

Since
θ0∫
0

|f(s)|ds ≥
∣∣∣∣θ0∫
0

f(s)ds

∣∣∣∣, then

ξ2(θ0)− η2(θ0) ≤ x20 − y20 −

∣∣∣∣∣∣
θ0∫

0

f(s)ds

∣∣∣∣∣∣−
θ0∫

0

e−asv2(s)ds

= x20 − y20 −

∣∣∣∣∣∣
√ρ2 − σ2

k − a

(
e(k−a)θ0 − 1

)
,

θ0∫
0

e−asv2(s)ds

∣∣∣∣∣∣−
θ0∫

0

e−asv2(s)ds

= x20 − y20 −

 ρ2 − σ2

(k − a)2

(
e(k−a)θ0 − 1

)2

+

 θ0∫
0

e−asv2(s)ds

2


1/2

−
θ0∫

0

e−asv2(s)ds. (2.7)

By letting
∫ θ0

0
e−asv2(s)ds = β on the right-hand side of (3.6), we examine the following function:

f(β) = x20 − y20 −

√
ρ2 − σ2

(k − a)2
(e(k−a)θ0 − 1)

2
+ β2 − β,
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where by (3.3) β ≥ −y20. For the derivative of f(β), we have

f ′(β) = − β√
ρ2−σ2

(k−a)2 (e(k−a)θ0 − 1)
2

+ β2
− 1 < 0.

Thus, the function f(β) is decreasing, hence, it reaches its maximum value at β = −y20. Consequently,
by using this in (3.6), we obtain:

ξ2(θ0)− η2(θ0) ≤ x20 − y20 −
(
ρ2 − σ2

(k − a)2

(
e(k−a)θ0 − 1

)2

+ (−y20)
2

)1/2

+ y20

= x20 −
(
ρ2 − σ2

(k − a)2

(
e(k−a)θ0 − 1

)2

+ y2
20

)1/2

= 0.

By combining this inequality with the condition ξ2(0) − η2(0) > 0 and noting that ξ2(t) − η2(t) is
continuous, we conclude that there exists some 0 < τ < θ0 such that ξ2(τ)− η2(τ) = 0.

Recalling that ξ1(t) = η1(t) for all t ≥ 0, which specifically implies ξ1(τ) = η1(τ), we have ξ(τ) =
η(τ). Consequently, θ0 serves as a guaranteed pursuit time in game (2.3). This completes the proof
of Lemma 2.2. �

Next, we prove Theorem 5.2.

Proof. We will begin by demonstrating that θ is a guaranteed pursuit time in game (1.1). To do this,
we suggest that the pursuers use the following strategies:

ui = v − (v, ei)ei + ei

√
(ρ2
i − σ2)e2kt + (v, ei)2, ei =

y0 − xi0
|y0 − xi0|

, i = 1, 2. (2.8)

It is not difficult to see that strategies (3.2) are admissible.
The following two cases are considered for the time θ:
Case 1. H(y0, r(θ)) ⊂ H(xi00, Ri0(θ)) for some i0 ∈ {1, 2} (see Figure 2).

Figure 2. Case 1: H(y0, r(θ)) ⊂ H(x10, R1(θ))

In this case, one can prove that strategies (3.7) guarantee the completion of pursuit for the time

θ =
1

k − a
ln

(
1 + (k − a)

|xi00 − y0|
ρ− σ

)
.
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More specifically, only the pursuer xi0 is capable of finishing the game within the time θ. Figure 2
depicts Case 1, where i0 = 1, indicating that only the first pursuer x1 can complete the game by the
time θ [24].

Figure 3. Case 2: H(y0, r(θ)) ⊂ H(x10, R1(θ)) ∪H(x20, R2(θ))

Case 2. (see Figure 3)

H(y0, r(θ)) * H(xi0, Ri(θ)), i = 1, 2, H(y0, r(θ)) ⊂ H(x10, R1(θ)) ∪H(x20, R2(θ)). (2.9)

In Case 2, by the definition of θ we have the following relation

H(y0, r(t)) 6⊂ H(x10, R1(t)) ∪H(x20, R2(t)), 0 ≤ t < θ. (2.10)

We show that θ is a guaranteed pursuit time in game (1.1). Indeed, for some ȳ ∈ S(y0, r(θ)), we
have

ȳ ∈ S(x10, R1(θ)) ∩ S(x20, R2(θ)), (2.11)

ȳ /∈ H(x10, R1(t)) ∪H(x20, R2(t))

for all 0 ≤ t < θ.
We draw straight lines Γi from the point ȳ, perpendicular to the vectors y0 − xi0, i = 1, 2. For

example, Figure 3 illustrates the straight line Γ1. The half-plane bounded by the straight line Γi that
includes the point xi0 is denoted as Xi, where i = 1, 2.

It can be shown similar to Assertion 4 (Appendix, [17]) that H(y0, r(θ)) ⊂ X1 ∪X2. By combining
this inclusion with the fact that y(θ) ∈ H(y0, r(θ)) we conclude that y(θ) must be in either X1 or X2.
If y(θ) ∈ X1, then by applying Lemma 2.2, we obtain x1(τ1) = y(τ1) at some 0 ≤ τ1 ≤ θ; similarly,
if y(θ) ∈ X2, then Lemma 2.2 implies x2(τ2) = y(τ2) at some 0 ≤ τ2 ≤ θ. This concludes that θ is a
guaranteed pursuit time in game (1.1).

Next, we demonstrate that θ is a guaranteed evasion time in game (1.1) for both Case 1 and Case
2. We let the evader employ the following strategy:

V (t) =
ȳ − y0

| ȳ − y0 |
σekt, t ≥ 0, (2.12)
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where ȳ is defined as above in Case 2, and ȳ ∈ S(y0, r(θ)) ∩ S(x10, R1(θ)) in Case 1. Strategy (4.1) is
admissible. Indeed,

|V (t)| =
∣∣∣∣ ȳ − y0

| ȳ − y0 |
σekt

∣∣∣∣ = σekt,

and so it satisfies the condition (2.1). Also, since |ȳ − y0| =
θ∫
0

σe(k−a)sds, we have

η(θ) = y0 +

θ∫
0

e(k−a)sv(s)ds = y0 +

θ∫
0

ȳ − y0

|ȳ − y0|
σe(k−a)sds = y0 + ȳ − y0 = ȳ,

that is the evader reaches the point ȳ at the time θ.
What remains is to demonstrate that ξi(t) 6= η(t) for all 0 ≤ t < θ and i = 1, 2. The following

reasoning applies to the definition of ȳ in both Case 1 and Case 2. Suppose the contrary, let ξi0(τ) =
η(τ) at some τ < θ and i0 ∈ {1, 2} when the evader applies (4.1). For specificity, assume i0 = 1, that

is, ξ1(τ) = η(τ). This implies
τ∫
0

e−as(u1(s)− v(s))ds = y0 − x10. Then using η(θ) = ȳ, we have

|ȳ − x10| =

∣∣∣∣∣∣y0 +

θ∫
0

e−asv(s)ds− x10

∣∣∣∣∣∣
=

∣∣∣∣∣∣(y0 − x10) +

θ∫
0

e−asv(s)ds

∣∣∣∣∣∣
=

∣∣∣∣∣∣
τ∫

0

e−as(u(s)− v(s))ds+

θ∫
0

e−asv(s)ds

∣∣∣∣∣∣
=

∣∣∣∣∣∣
θ∫
τ

e−asv(s)ds+

τ∫
0

e−asu1(s)ds

∣∣∣∣∣∣
≤

θ∫
τ

e−as |v(s)| ds+

τ∫
0

e−as |u1(s)| ds

≤ σ

θ∫
τ

e−aseksds+ ρ

τ∫
0

e−aseksds

< ρ

θ∫
0

e(k−a)sds = R1(θ).

This implies ȳ lies within the interior of the ball H(x10, R1(θ)), and therefore ȳ ∈ H(x10, R1(t1)) for
some t1 < θ. This contradicts condition (2.11). Consequently, ξi(t) 6= η(t) for all 0 ≤ t < θ and
i = 1, 2, meaning that θ is a guaranteed evasion time. Therefore, θ is the optimal pursuit time. The
proof of the theorem is now complete.

�
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3. Conclusions

We have studied a differential game described by a linear differential equations involving two pur-
suers and one evader in R2. The control functions of players are subjected to the Grönwall type
constraints. We have found an equation for the optimal pursuit time and constructed optimal strate-
gies of players. The optimal strategies of pursuers are defined by the equation (3.7) and the optimal
strategy of the evader is defined by (4.1). The optimal strategy of the evader (4.1) satisfies the equation
|v(t)| = σekt. Also, according to the Grönwall type constraint (2.1) we have |v(t)| ≤ σekt. Therefore,
we can say that the evader moves with its maximal speed. The equation |v(t)| = σekt and (3.7) imply
that |ui(t)| = ρie

kt, i = 1, 2, meaning that the pursuers move with maximal speeds as well.
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1. Introduction

The literature [1, 2, 3, 4, 5, 6] provides a theory for constructing approximate integration formulas,
and a number of quadrature and cubature formulas are presented. Cubature formulas are constructed
mainly for standard domains: Cn is an n-dimensional cube, Chull

n is an n-dimensional cubic hull,
Sn is an n-dimensional ball, Shull

n is an n-dimensional spherical hull, Un is a sphere (the surface

of an n-dimensional ball), Tn is an n-dimensional simplex, Er2

n is an n-dimensional space with the
weight function exp (−x2

1 − x2
2 − · · · − x2

n), Er
n is an n-dimensional space with the weight function

exp
(
−
√
x2

1 + x2
2 + · · ·+ x2

n

)
, etc.

In the works [7, 8, 9, 10, 11] applications of orthogonal polynomials to the construction of cubature
formulas are shown, and in [12, 13, 14] cubature formulas with a minimum number of nodes for a
given degree of accuracy for some domains are constructed.

In this work cubature formulas of the fifth and seventh degrees of accuracy are constructed for
domains symmetric with respect to the coordinate axes. The point (0,0) the origin of coordinates is
the center of symmetry, which belongs to the domain of integration. Cubature formulas of the fifth
degree of accuracy are constructed using theorem 11.6 [5] p. 234, and the formula of the seventh
degree of accuracy is constructed using a modified method of the reproducing kernel, adapted for
domains with central symmetry [5] p. 245. The number of nodes of the constructed cubature formulas
is minimal.

In recent years, a number of results have been obtained on the construction of optimal formulas for
the approximate calculation of definite integrals (see [15, 16, 17, 18, 19, 20] ).

1.1. Construction of a cubature formula of the fifth degree of accuracy. Let us write out
the main orthogonal polynomials of the third degree of the region under consideration:

P30 = x3 − µ40

µ20

x, P12 = xy2 − µ22

µ20

x, P21 = x2y − µ22

µ02

y, P03 = y3 − µ04

µ02

y.

Consider the following linear combination:

f1 = αP21 + γP03 = y

(
αx2 + γy2 − αµ22 + γµ04

µ02

)
,

g1 = P30 −
µ40

µ22

P12 = x(x2 − µ40

µ22

). (1.1)

Let us list the intersection points of the curves f1 = 0, g1 = 0: (0, 0) is triple point,(
0,±

√
αµ21 + βµ04

µ02

)
= (0,±c),

(
±

√
µ22(αµ22 + γµ04)

µ02(αµ40 + γµ22)
, ±

√
µ22(αµ22 + γµ04)

µ02(αµ40 + γµ22)

)
= (±a,±b)

Curves f1 = 0, g1 = 0 intersect at nine points taking into account multiplicity, therefore, by theorem
11.6 [5] p. 234, the following cubature formula exists:
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∫∫
Ω

F (x, y) dx dy ≈ C00F (0, 0) + C20

∂2F (0, 0)

∂x2
+ C02

∂2F (0, 0)

∂y2

+A
4∑
1

F (±a,±b) +B
2∑
1

F (0,±c)
(1.2)

algebraic degree of accuracy s ≤ 5.
The terms containing the values of the derivatives Fx, Fy, Fxy at the point (0, 0) are not written

out here, since it is known in advance that the coefficients of these derivatives are equal to zero. This
follows from the symmetry of the region Ω and the arrangement of the nodes of the cubature formula
(1.2).

The values of the parameters a, b, c are defined as follows: In the cubature formula (1.2), assuming
F = f1 · y, we obtain that the integral is equal to zero due to the orthogonality of the polynomial
f1, and in the cubature sum only the term −2C02

αµ22+γµ04

µ02
remains, since all nodes lie on the curve

f1 = 0. From this we conclude that C02 = 0 for any α 6= 0, β 6= 0.
Next, consider the following orthogonal polynomial:

f2 = αP30 + γP12 = x(αx2 + γy2 − αµ40 + γµ22

µ20

). (1.3)

We define the values of α and γ so that the second moments of the polynomials f1 and f2 are equal.
This is equivalent to the equality:

α
µ22

µ02

+ γ
µ04

µ20

= α
µ40

µ20

+ β
µ22

µ20

.

From this we get:
α = µ20µ04 − µ02µ22, β = µ02µ40 − µ20µ22. (1.4)

Thus we have:
f1 = y

(
α(x2 + y2)−∆

)
, f2 = x

(
α(x2 + y2)−∆

)
,

where ∆ = µ04µ40 − µ2
22 > 0, since ∆ is the Gram determinant composed of monomials x2, y2.

For F = f2 · x, from (1.2) we obtain that the integral is equal to zero due to the orthogonality of
the polynomial f2, and in the cubature sum only the term −2C20∆ remains, since all nodes of the
cubature formula (1.2) also lie on the curve f2 = 0. From this we conclude that C20 = 0.

Now we present the values of the nodes, taking into account equalities (1.4)

(±a,±b) =

(
±
√
µ40

µ20

,±
√
µ22

µ20

)
, (0,±c) =

(
0,±

√
∆

γ

)
Let us write the final form of the cubature formula (1.2):∫∫

Ω

F (x, y) dx dy ∼= C00F (0, 0) +A1

4∑
1

F (±a,±b) +B1

2∑
1

F (0,±c) (1.5)

where

A =
µ20

4µ40

, B =
γ2

2µ40 ·∆
, C00 = µ00 −

αµ20 + γµ02

∆

and they are determined from (1.5) with F = x2, y2, 1.
If we take the following polynomials as orthogonal polynomials:

f2 = αP30 + γP12 = x(αx2 + γy2 −∆),

g2 = P21 −
µ04

µ22

= y(x2 − µ04

µ22

y2) (1.6)
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and having performed all the previous calculations, we arrive at the following cubature formula with
seven nodes ∫∫

Ω

F (x, y) dx dy ∼= C00F (0, 0) +A1

4∑
1

F (±a1,±b1) +B1

2∑
1

F (±c1, 0) (1.7)

where:

a1 =

√
µ04

µ02

, b1 =
µ22

µ02

, c1 =

√
∆

α
,

A1 =
µ2

02

4µ04

, B1 =
α2

2µ04 ·∆
, C00 = µ00 −

αµ20 + γµ02

∆
.

Note that for other values of the parameters α and γ, different from (1.4), the values of the partial
derivatives Fxx(0, 0) and Fyy(0, 0), respectively, will participate in the cubature formulas (1.5) and
(1.7).

The number of nodes of the cubature formulas (1.5) and (1.7) N = 7 is minimal in the class of
cubature formulas that have among their nodes the origin of coordinates - the center of symmetry of
the domain Ω [5], Theorem 9.1, p. 196.

Now we will conduct a comparative analysis of the obtained results, without performing computa-
tional work on constructing a cubature formula of the fifth degree of accuracy with the Radon method
of the reproducing kernel for k = 2. This is explained by the fact that we have already obtained all
the necessary information.

(1) The values of the parameters α and γ (1.4) are the same as in the Radon method for the
considered domain Ω.

(2) The nodes of the cubature formula (1.5) are the common zeros of two orthogonal polynomials.

f1 = y(αx2 + γy2 −∆), g1 = x

(
x2 − y2µ40

µ22

)
,

and in the Radon method, the nodes are the common zeros of three orthogonal polynomials:

f1 = y(αx2 + γy2 −∆), f2 = −x(αx2 + γy2 −∆), g1 = x

(
x2 − y2µ40

µ22

)
.

For clarity of further presentation, we present Lemma 8.2 from [5], p. 178.
Lemma 8.2. If L(x) is a polynomial of degree one such that L(a) = 0, then the polynomial

L(x) ·Kk(x), k ∈ N

is orthogonal to all polynomials of degree at most k − 1. In particular, if a is the common root of all
orthogonal polynomials of degree at most k + 1, then the polynomial L(x) · Kk(x) is an orthogonal
polynomial of degree k + 1.

3. According to this lemma, the point a(1) = (0, 0) is the common root of all orthogonal polynomials
of degree three, which means that the polynomials

f1 = y(αx2 + γy2 −∆), f2 = x(αx2 + γy2 −∆)

differ with an accuracy of a non-zero constant factor from the polynomials

yK2(0, 0;xy) and xK2(0, 0;xy)

So we get
K2(a(1);xy) = c1(αx2 + γy2 −∆), c1 6= 0
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Point a(2) is determined from the condition K2(a(1), a(2)) = 0. It follows that a(2) =
(

0,
√

∆
γ

)
, and

the corresponding kernel have the form

K2(a(2), x, y) = c2

(
x2 − µ40

µ22

y2

)
, c2 6= 0.

The curves determined by the reproducing kernels K2(a(i), xy) and i = 1, 2 intersect at four different
real points: (

±
√
µ40

µ20

,±
√
µ22

µ20

)
= (±a,±b),

then by Theorem 12.2 [5], p. 245 there exists a cubature formula

∫∫
Ω

F (x, y) dx dy ∼= C00F (0, 0) +B
2∑
1

(
F

(
0,

√
γ

δ

)
+ F

(
0,−

√
γ

δ

))
+A

4∑
1

F (±a,±b),

where

C00 =
1

b1

, B =
1

b2

, A =
µ2

20

4µ40

,

b1 = K
(1)
2 (a(1); a(1)) > 0, b2 = K

(2)
2 (a(2); a(2)) > 0,

so that C00 > 0, B > 0.

2. Cubature formula of the seventh degree of accuracy

We will construct a cubature formula of the seventh degree of accuracy using a modified method
of the reproducing kernel. According to Theorem 12.2 [5], p. 245. In this section, we assume that
the boundaries of one integral depend on the variable of the other integral, while maintaining the
symmetry of the domain Ω.

Let us present orthonormal polynomials of odd degree k ≤ 3 of the considered domain Ω:

f1 =

√
1

µ20

x, f2 =

√
1

µ02

y, f3 =

√
µ20

∆1

(
x3 − µ40

µ20

x

)
,

f4 = A4

(
xy2 +

σ1

∆1

x3 − σ2

∆1

x

)
, f5 =

√
µ02

∆2

(
y3 − µ04

µ02

y

)
,

f6 = A6

(
x2y +

σ3

∆2

y3 − σ4

∆1

y

)
,

where
∆1 = µ20µ60 − µ2

40 > 0, ∆2 = µ02µ60 − µ2
04 > 0, σ1 = µ40µ22 − µ20µ42,

σ2 = µ60µ22 − µ40µ42, σ3 = µ04µ22 − µ02µ24, σ4 = µ06µ22 − µ04µ24.

A4, A6 are normalizing factors that do not need to be calculated, this is found out quite simply.
As the point a(1) we take the point a(1) = (c, 0), so that the monomial xy2 is absent in the reproduced

kernel. For this, it is sufficient to satisfy the equality:

F4(c, 0) = 0 (2.1)

From (2.1) we obtain:

σ1

∆1

c3 − σ2

∆1

c = 0

c1 = 0, c2 =

√
σ2

σ1

, c3 = −
√
σ2

σ1
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Point (0, 0) ∈ V3, and points
(
±
√

σ2

σ1
, 0
)
/∈ V3, where V3 is the set of common zeros of the basic

orthogonal polynomials of degree three.

Let a(1) = (c, 0), c =
√

σ2

σ1
.

Let us write the reproducing kernel of the point a(1):

K
(1)
3 (a(1), xy) = F1(a(1))F1(x, y) + F3(a(1))F3(x, y) =

1

µ20

cx+
µ20

∆1

(c3 − µ40

µ20

c)(x3 − µ40

µ20

x)

After some simplifications we write:

K
(1)
3 (a(1);x, y) =

cµ22

σ1

(
x3 − µ42

µ22

x

)
. (2.2)

We take same point on the ordinate axis a(2) = (0, d) so that the reproduced kernel does not contain
the monomial xy2. For this, it is sufficient to satisfy the equality:

F6(0, d) = 0 (2.3)

From (2.3) it follows:

σ3

∆2

y2 − σ4

∆2

y = 0,

d1 = 0, d2 =

√
σ4

σ3

, d3 = −
√
σ4

σ3

.

Point (0, 0) ∈ V3, and points
(
±
√

σ4

σ3
, 0
)
/∈ V3,

where V3 is the set of two zeros of the basic orthogonal polynomials of the third degree.

Let a(2) = (0, d), d =
√

σ4

σ3

The reproducing kernel of the point a(2) is of the form:

K
(2)
3 (a(2), xy) =

dµ22

σ3

(
y3 − µ24

µ22

y

)
(2.4)

Now we define the common zeros of the polynomials determined by the reproducing kernels:

(0, 0),

(
±
√
µ42

µ22

, 0

)
,

(
0,±

√
µ24

µ22

)
,


x3 − µ42

µ22

x = 0

y3 − µ24

µ22

y = 0

⇒
(
±
√
µ42

µ22

,±
√
µ24

µ22

)
.

According to Theorem 12.2.1 [5], p. 215, there exists the following cubature formula of the seventh
degree of accuracy:∫∫

Ω

f(x, y) dxdy ∼=
2∑
i=1

1

2bi

[
f(a(i)) + f(−a(i))

]
+A

4∑
1

f

(
±
√
µ42

µ22

,±
√
µ24

µ22

)
+

+B
2∑
1

f

(
±
√
µ42

µ22

, 0

)
+ C

2∑
1

f

(
0,±

√
µ24

µ22

)
+ 2Df(0, 0), (2.5)

where:

b1 = K
(1)
3 (a(1), a(1)) =

σ2(σ2µ22 − σ1µ42)

σ3
1

> 0,
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b2 = K
(2)
3 (a(2), a(2)) =

σ4(σ4µ22 − σ3µ2)

σ3
3

> 0

A =
µ3

22

4µ42µ24

, B =
µ22

µ42

(
µ20 −

1

b1

σ2

σ1

)
− 2A,

C =
µ22

µ24

(
µ02 −

1

b2

σ4

σ3

)
− 2A, D = µ00 − 4A− 2B − 2C.

The cubature formula (2.5) is exact for algebraic polynomials of degree s ≤ 7 and the number of
nodes N = 13 is minimal according to Theorem 9.1 p. 196 [5] in the class of cubature formulas that
have among their nodes the origin of coordinates the center of symmetry of the domain Ω.

3. Cubature formula of medium accuracy taking into account the values of
second-order derivatives.

We will construct such a cubature formula using the method of indefinite parameters, arranging
the nodes according to the symmetry of the region and comparing the same values of the coefficients
to each group of symmetric nodes. Let us write the cubature formula in the following form:∫∫

Ω

f(x, y) dxdy = A
4∑
1

f(±a,±b) +B
2∑
1

f(±c, 0) +D
2∑
1

f(0,±d)+

+C0f(0, 0) + C20

∂2f(0, 0)

∂x2
+ C20

∂2f(0, 0)

∂y2
, (3.1)

where the undefined parameters are A,B,C,C00, C20, C02, a, b, c, d, the number of which is equal to
nine. We will find them by requiring that the cubature formula (3.1) has an algebraic degree of
accuracy s ≤ 7. For this, the accuracy of equality (3.1) is sufficient for

f = 1, x2, y2, x4, y4, x2y2, x6, y6, x2y4, x4y2.

This follows from the symmetry of the domain and the arrangement of the nodes. The number of
equations is equal to nine, i.e. the same as the number of undefined parameters.

For f = x2, y2, x4y2, x2y4 from (3.1) we obtain that

a =

√
µ42

µ22

, b =

√
µ24

µ22

, A =
µ3

22

4µ42µ24

.

Next, putting in (3.1) f = x4, x6 we obtain:{
4Aa4 + 2Bc4 = µ40,

4Aa6 + 2Bc6 = µ60

⇒ C =

√
µ60 − 4Aa6

µ40 − 4Aa4
, B =

(µ40 − 4Aa4)
3

2 (µ60 − 4Aa6)
2 .

For f = x2 we get:

4Aa2 + 2Bc2 + 2C20 = µ20,

from which we have:
C20 =

µ20

2
− 2Aa2 −Bc2

Similarly, in (3.1), setting f = y4, y6, y2, we get:

d =

√
µ06 − 4Ab6

µ4 − 4Ab4
, D =

(µ04 − 4Ab4)3

2(µ06 − 4Ab6)2
,

C02 =
µ02

2
− 2Ab2 −Dd2.
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And finally, for f = 1 from (3.1) we get:

C00 = µ00 − 4A− 2B − 2D.
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Abstract. Let G be finite Jordan domain bounded a Dini smooth curve Γ in the complex plane.
Marcinkiewicz multiplierand Littlewood-Paley type theorems in Smirnov-Orlicz classes, defined in
domain G, are proved.
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1. Introduction and main results

Let T denote the interval [0, 2π]. Let Lp(T), 1 ≤ p < ∞ be the Lebesgue space of all measurable
2π−periodic functions defined on T such that

‖f‖p :=

∫
T

|f(x)|p dx

 1
p

<∞.

Let T denote the interval [−π, π] , C the complex plane, and Lp(T), 1 ≤ p ≤ ∞, the Lebesgue
space of measurable complex-valued functions on T. A convex and continuous function M : [0,∞)→
[0,∞) which satisfies the conditions

M (0) = 0, M (x) > 0 for x > 0,

lim
x→0

(M (x) /x) = 0; lim
x→∞

(M (x) /x) =∞,

is called a Young function. We will say that M satisfies the ∆2−condition if M(2u) ≤ cM(u) for any
u ≥ u0 ≥ 0with some constant c, independent ofu.

We can consider a right continuous, monotone increasing function ρ : [0,∞)→ [0,∞) with

ρ (0) = 0; lim
t→∞

ρ (t) =∞ and ρ (t) > 0 for t > 0,

then the function defined by

N (x) =

|x|∫
0

ρ (t) dt

is called N−function. For a given Young function M , let L̃M(T) denote the set of all Lebesgue
measurable functions f : T→ Cfor which∫

T

M (|f(x)|) dx <∞.

The N−function complementary to M is defined by

N (y) := max
x≥0

(xy −M (x)) , for y ≥ 0.

Let N be the complementary Young function of M . It is well-known [23, p. 69], [37, pp. 52-68]

that the linear span of L̃M(T) equipped with the Orlicz norm

‖f‖LM (T) := sup


∫
T

|f(x)g(x)| dx : g ∈ L̃N(T),

∫
T

N (|g(x)|) dx ≤ 1

 , (1.1)
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or with the Luxemburg norm

‖f‖∗LM (T) := inf

k > 0 :

∫
T

M

(
|f(x)|
k

)
dx ≤ 1


becomes a Banach space. This space is denoted by LM(T) and is called an Orlicz space [23, p. 26].
The Orlicz spaces are known as the generalizations of the Lebesgue spaces Lp(T), 1 < p < ∞. If
M(x) = M(x, p) := xp, 1 < p <∞, then Orlicz spaces LM(T) coincide with the usual Lebesgue spaces
Lp(T), 1 < p <∞. Note that the Orlicz spaces play an important role in many areas such as applied
mathematics, mechanics, regularity theory, fluid dynamics and statistical physics (e.g., [12, 32, 39]).
Therefore, investigation of approximation of functions by means of Fourier trigonometric series in
Orlicz spaces is also important in these areas of research.

The Luxemburg norm is equivalent to the Orlicz norm. The inequalities

‖f‖∗LM (T) ≤ ‖f‖LM (T) ≤ 2 ‖f‖∗LM (T) , f ∈ LM(T)

hold [33, p. 80].
If we choose M(u) = up/p, 1 < p < ∞ then the complementary function is N(u) = uq/q with

1/p+ 1/q = 1 and we have the relation

p−1/p ‖u‖Lp(T) = ‖u‖∗LM (T) ≤ ‖u‖LM (T) ≤ q
1/q ‖u‖Lp(T) ,

where ‖u‖Lp(T) =

(∫
T
|u(x)|p dx

)1/p

stands for the usual norm of the Lp(T)space.

If N is complementary to M in Young’s sense and f ∈ LM(T), g ∈ LN(T) then the so-called
strong Hölder inequalities [23, p. 80]∫

T

|f(x)g(x)| dx ≤ ‖f‖LM (T) ‖g‖
∗
LN (T) ,

∫
T

|f(x)g(x)| dx ≤ ‖f‖∗LM (T) ‖g‖LN (T)

are satisfied.
The Orlicz space LM(T) is reflexive if and only if the N−function M and its complementary function

N both satisfy the ∆2−condition [37, p. 113].
Let G be a finite domain in the complex plane C, bounded by the rectifiable Jordan curve Γ.

Without loss of generality we assume 0 ∈ Int Γ. Let G−: =Ext Γ. Let also T := {w ∈ C : |w| = 1},
D = Int T and D− = Ext T. We recall that if for a given analytic function f on G, there exists
a sequence of rectifiable Jordan curves (Γn) in G tending to the boundary Γ in the sense that
Γn eventually surrounds each compact subdomain of G such that∫

Γn

|f(z)|p |dz| ≤ K <∞,

then we say that f belongs to the Smirnov class Ep(G), 1 ≤ p <∞. Each function f ∈ Ep (G) has
non-tangential limit almost everywhere (a.e.) on Γ and the boundary function belongs to Lp (Γ) .

We define also the Smirnov -Orlicz classes EM (G)of analytic functions in G as

EM (G) :=
{
f ∈ E1 (G) : f ∈ LM (Γ)

}
.

We define the norm of f ∈ EM (G)by

‖f‖EM (G) := ‖f‖LM (Γ) .
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Note that Smirnov-Orlicz class EM (G) is a generalization of the Smirnov class Ep(G). In particular,
if M (x) := xp, 1 < p < ∞, then the Smirnov-Orlicz class coincides with the Smirnov class Ep(G)
[20, 28].

Let also χ be a continuous function on 2π. Its modulus of continuity is defined by

ω(t, χ) := sup
t1,t2∈[0,2π],|t1−t2|<t

|χ (t1)− χ (t2)| , t ≥ 0 .

The curve Γ is called Dini-smooth curve if it has the parametrization

Γ : χ (t) , 0 ≤ t ≤ 2π ,

such that χ′ (t) is Dini-continuous [36, p.48], i.e.

π∫
0

ω (t, χ′)

t
dt <∞

and
χ′ (t) 6= 0.

Note that the order of polynomial approximation in Ep (G) , p ≥ 1, has been investigated by several
authors. In [42] Walsh and Rusel gave results when Γ is an analytic curve. When Γ is a Dini-smooth
curve, direct and inverse theorems were proved by S. Y. Alper [5]. These results were later extended
to domains with regular boundaries for p > 1 by V. M. Kokilashvili [30] and for p ≥ 1 by J. E.
Andersson [6]. The approximation properties of the p−Faber series expansions in the ω−weighted
Smirnov class Ep (G, ω) of analytic functions in G whose boundary is a regular Jordan curve are
investigated in [21].

We denote by ϕ the conformal mapping of G−onto D−normalized by

ϕ (∞) =∞ , lim
z→∞

ϕ (z)

z
> 0.

Let ψ be the inverse of ϕ. The function ϕ and ψ have continuous extensions to Γ and T, their
derivatives ϕ′ and ψ′ have definite non-tangential limit values on Γ and T a.e., and they are integrable
with respect to the Lebesgue measure on on Γ and T, respectively. It is known that ϕ′ ∈ E1 (G−)
and ψ′ ∈ E1 (D−) . Note that the general information about Smirnov classes can be found in [14, pp.
168-185] and [19, pp. 438-453].

We denote also by w = ϕ1 (z) the conformal mapping of G onto the domain D− := {w ∈ C : |w| > 1}
normalized by the conditions

ϕ1 (0) =∞, lim
z→0

(zϕ1 (z)) > 0,

and let ψ1 be the inverse mapping of ϕ1 .

The functions ψ and ψ1have in some deleted neighborhood of the point w =∞ the representations

ψ (w) = γw + γ0 +
γ1

w
+
γ2

w2
+ ..., γ > 0

and
ψ1 (w) =

α1

w
+
α2

w2
+ ...+

αk
wk

+ ..., α1 > 0.

The following expansions hold [11], [14] and [38]:

ψ′ (w)

ψ (w)− z
=
∞∑
k=0

Fk (z)

wk+1
, z ∈ G and w ∈ D−, (1.2)

and
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ψ′1 (w)

ψ1 (w)− z
=
∞∑
k=0

−
F ∗
(

1
z

)
wk+1

, z ∈ G− and w ∈ D−, (1.3)

where Fk (z) and F ∗k
(

1
z

)
are the Faber polynomials of degree k with respect to z and 1

z
for the

continuums Gand C\G, respectively. Also, for the Faber polynomials Φk (z) and rational functions
F ∗k
(

1
z

)
the integral representations

Fk (z) = [ϕ (z)]
k

+
1

2πi

∫
Γ

[ϕ (ζ)]
k

ζ − z
dζ, k = 0, 1, 2, ..., z ∈ G−,

F ∗k

(
1

z

)
= [ϕ1 (z)]

k − 1

2πi

∫
Γ

[ϕ1 (ζ)]
k

ζ − z
dζ, k = 0, 1, 2, ..., z ∈ G\ {0}

hold [11, 38].
Let f ∈ L1 (Γ). Then the functions f+ and f− defined by

f+ (z) =
1

2πi

∫
Γ

f (ζ)

ζ − z
dζ =

1

2πi

∫
T

f (ψ (w))ψ′ (w)

ψ (w)− z
dw, z ∈ G (1.4)

and

f− (z) =
1

2πi

∫
Γ

f (ζ)

ζ − z
dζ =

1

2πi

∫
T

f (ψ1 (w))ψ′1 (w)

ψ1 (w)− z
dw, z ∈ G− (1.5)

are analytic in G and G−, respectively, and f− (∞) = 0. Thus the limit

SΓ (f) (z) := lim
ε→∞

1

2πi

∫
Γ∩{ζ:|ζ−z|>ε}

f(ζ)

ζ − z
dζ

exists and is finite for almost all z ∈ Γ.
The quantity SΓ(f)(z) is called the Cauchy singular integral of f at z ∈ Γ.
According to the Privalov theorem [19, p.431] if one of the functions f+ or f− has the non-tangential

limits almost every (a.e.) on Γ, then SΓ(f)(z) exists a.e. on Γ and also the other one has the non-
tangential limits a.e. on Γ. Conversely, if SΓ(f)(z) exists a.e. on Γ, then the functions f+ (z) and
f− (z) have non-tangential limits a.e. on Γ. In both cases, the formulae

f+(z) = SΓ(f)(z) +
1

2
f(z), f−(z) = SΓ(f)(z)− 1

2
f(z) (1.6)

and hence
f (z) = f+ (z)− f− (z) (1.7)

holds a.e. on Γ. From the results in [25] , it follows that if Γ is a Dini-smooth curve SΓ is bounded
on LM(Γ). Note that some properties of the Cauchy singular integral in the different spaces were
investigated in [10, 13, 15, 18, 25, 27, 29, 31, 35].

Let f ∈ EM (G) . Then taking into account f ∈ E1 (G) and Cauchy’s intergral formula we obtain

f (z) =
1

2πi

∫
Γ

f (ζ)

ζ − z
dζ =

1

2πi

∫
T

f (ψ (w))ψ′ (w)

ψ (w)− z
dw, z ∈ G. (1.8)

Then using (1.2) and (1.8) we can associate Faber series

f (z) v
∞∑
k=0

akFk (z) , (1.9)
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where

ak :=
1

2πi

∫
T

f [ψ (w)]

wk+1
dω, k = 0, 1, 2, ... .

Let f ∈ EM (G−) . In this case, similar to above by Cauchy’s intergral formula and (1.3) we can
associate series

f (z) v
∞∑
k=1

bkF
∗
k

(
1

z

)
, (1.10)

where

bk :=
1

2πi

∫
T

f [ψ1 (w)]

wk+1
dw, k = 1, 2, ...

Let f ∈ LM(Γ). Using (1.2), (1.3), (1.4), (1.5), (1.6) and (1.7) we can associate Faber-Laurent series

f (z) v
∞∑
k=0

akFk (z) +
∞∑
k=1

bkF
∗
k

(
1

z

)
,

where the coefficients ak and bk are defined by

ak :==
1

2πi

∫
T

f [ψ (w)]

wk+1
dω, k = 0, 1, 2, ...

and

bk :=
1

2πi

∫
T

f [ψ1 (w)]

wk+1
dw, k = 1, 2, ...

The coefficients ak and bk are said to be the Faber-Laurent coefficients of f.
We use the constants c1, c2, ... (in general, different in different relations) which depend only on the

quantities that are not important for the questions of interest.
If Γ is a Dini-smooth curve, then from the results in [43], it follows that

0 < c1 < |ϕ′ (z)| < c2 <∞, 0 < c3 < |ϕ′1 (z)| < c4 <∞,
0 < c5 < |ψ′ (w)| < c6 <∞, 0 < c7 < |ψ′1 (ω)| < c8 <∞,

where the constants c1, c2, c3, c4 and c5, c6, c7, c8 are independent of z ∈ Ḡ−and |w| ≥ 1, respectively.
Let Γ be a Dini-smooth curve and let f0 (w) := f [ψ (w)] for f ∈ LM(Γ) and let f1 (w) := f [ψ1 (w)]

for f ∈ LM(Γ).Then using (1.10) we obtain f0 ∈ LM(T) and f1 ∈ LM(T) for f ∈ LM(Γ).
Moreover, f−0 (∞) = f−1 (∞) = 0 and by (1.9 )

f0(w) = f+
0 (w)− f−0 (w),

f1(w) = f+
1 (w)− f−1 (w).

(1.11)

We also introduce the notations

∆k (f) (z) =
2k−1∑
s=2k−1

as (f)Fs (z) ,

and

∆∗k (f) (z) =
2k−1∑
s=2k−1

a∗s (f)F ∗s (1/z) ,

for f ∈ EM (G) and f ∈ E∗M (G−) , respectively.
Let Γ be a Dini-smooth curve We obtain f+ ∈ EM (G) and f− ∈ E∗M (G−) for f ∈ LM (Γ) . Then

we can write the series

f+ (z) ∼
∞∑
k=0

ak
(
f+
)

Φk (z) , z ∈ G
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and

f+ (z) ∼
∞∑
k=0

bk
(
f−
)
F ∗k (1/z) , z ∈ G−.

The equality f = f+ − f− is satisfied a.e. on Γ. Then we can associate with f the formal series

f (z) ∼
∞∑
k=0

ak
(
f+
)
Fk (z)−

∞∑
k=0

bk
(
f−
)
F ∗k (1/z) , (1.12)

a.e. on Γ.
We consider the sequences {λs}∞0 of complex numbers which satisfies the following conditions for

all natural numbers s and m,

|λs| ≤ c9,
2m−1∑
s=2m−1

|λs − λs+1| ≤ c10. (1.13)

Note that for Fourier series the multiplier theorem in Lebesgue spaces was proved by Marcinkiewicz
[32] (see also, [46], Vol.II, p.232). Later on the multiplier theorems in the different spaces have been
investigated by several authors (see [17, 24, 30]). When the weight function satisfies the Muckenhoupt
condition, the Littlewood-Paley type theorem in weighted Lebesgue spaces Lp (T) , 1 < p <∞, ob-
tained by D. S. Kurtz [24]. When the boundary of domain G is a Carleson curve in the Smirnov classes
Ep (G) , 1 < p <∞, the Littlewood-Paley type theorems have been investigated by A. Guven and D.
M. Israfilov [17]. Also, these theorems play an important role in the various problems of approximation
theory. Using Littlewood-Paley type theorems, direct and inverse theorems of approximation theory
in different spaces are obtained ( see [30, 40, 41]).

In this work for Faber series the analogs of Marcinkiewicz multiplier theorem and Littlewood-Paley
type theorem are proved in Smirnov-Orlicz classes, defined in the domains with Dini-smooth boundary.
Similar problems of approximation of the functions by trigonometric polynomials, Faber polynomials
and Faber-Laurent rational functions in different spaces have been investigated by several authors (see
([1-8], [21], [22], [42] and [45]).

Note that in the proof of the main results in this work, we use the methods of proof in the studies
[9], [17] and [24].

Our main results are as follows.
Theoem 1.1. Let G be a finite, simply connected domain with a Dini-smooth boundary Γ and let

LM (Γ) be a reflexive Orlicz space on Γ. If f ∈ EM (G) with the Faber series (1.9) and {λk}∞0 is
a sequence of complex numbers which satisfies the condition (1.14), then there exists a function F ∈
EM (G) which has the Faber series

F (z)∼
∞∑

k=−0

λkak (f) Fk (z) , z ∈ G

and ‖F‖LM (Γ) ≤ c ‖f‖LM (Γ).

We can write similar theorem for f ∈ E∗M (G−):
Theorem 1.2. Let G be a finite, simply connected domain with a Dini-smooth boundary Γ and

let LM (Γ) be a reflexive Orlicz space on Γ. If f ∈ E∗M (G−) with the Faber series (1.10) and
{λk}∞0 is a sequence of complex numbers which satisfies the condition (1.14), then there exists a
function f ∈ E∗M (G−) which has the Faber series

F (z) ∼
∞∑

k=−1

λka
∗
k (f)F ∗k (1/z) , z ∈ G−

and ‖F‖LM (Γ) ≤ c ‖f‖LM (Γ).

From Theorem 1.1 and Theorem 1.2 the following Corollary is obtained:
Corollary 1.1. Let Γ be a Dini-smooth curve. If f ∈ LM (Γ) has the Faber-Laurent seriers (1.13)

and {λk}∞0 is a sequencve of complex numbers which satisfies the condition (1.14), then there exist a
function F ∈ LM (Γ) , which has the Faber-Laurent series
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F (z)∼
∞∑
k=0

λkak
(
f+
)

Fk (z)−
∞∑
k=0

λkbk
(
f−
)

F ∗k (1/z)

and satisfies ‖F‖LM (Γ) ≤ c ‖f‖LM (Γ) .

When the boundary of domain G is a Dini-smooth curve ın the Smirnov-Orlicz class EM (G) the
following Littlewood-Paley theorems hold:

Theorem 1.3. Let Γ be a Dini-smooth curve and f ∈ EM (G) . Then the two-sided estimate

c11 ‖f‖LM (Γ) ≤

∥∥∥∥∥∥
[
∞∑
k=0

|∆k (f) (z)|2
]1/2

∥∥∥∥∥∥
LM (Γ)

≤ c12 ‖f‖LM (Γ) . (1.14)

holds.
Theorem 1.4. Let Γ be a Dini-smooth curve and f ∈ E∗M (G−) .Then the two-sided estimate

c13 ‖f‖LM (Γ) ≤

∥∥∥∥∥∥
[
∞∑
k=0

|∆∗k (f) (z)|2
]1/2

∥∥∥∥∥∥
LM (Γ)

≤ c14 ‖f‖LM (Γ) .

holds.

2. Auxiliary results

Let P :={all polynomials (with no restriction on the degree)}, and let P(D) be the set of traces
of members of P on D. We define two operator as follows [10]:

T := P(D) −→ EM (G) ,

T (P )(z) :=
1

2πi

∫
T

P (w)ψ′(w)

ψ(w)− z
dw, z ∈ G.

and

T := P(D) −→ E∗M (G,ω) ,

T ∗(P )(z) :=
1

2πi

∫
T

P (w)ψ′1(w)

ψ1(w)− z
dw, z ∈ G−.

It is readily seen that

T

(
n∑
k=0

bkw
k

)
=

n∑
k=0

bkFk (z) and T ∗
(

n∑
k=0

dkw
k

)
=

n∑
k=0

bkFk (1/z) .

Note that if z′ ∈ G, then

T (P )(z′) =
1

2πi

∫
T

P (w)ψ′(w)

ψ(w)− z
dw =

1

2πi

∫
T

(P ◦ φ) (ζ)

ζ − z
dζ = (P ◦ φ)+ (z′) ,

which by (1.6) imples that

T (P )(z) = SΓ(P ◦ φ) (z) +
1

2
P ◦ φ) (z) ,

a.e. on Γ.
Similar to above if z” ∈ G− the relation

T ∗(P )(z′) =
1

2πi

∫
T

P (w)ψ′1(w)

ψ1(w)− z
dw =

1

2πi

∫
T

(P ◦ φ1) (ζ)

ζ − z
dζ = (P ◦ φ1)− (z”)
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holds. Then according to (1.6)

T ∗(P )(z) = SΓ(P ◦ φ1) (z)− 1

2
P ◦ φ1) (z)

holds a.e. on Γ.
According to the Hahn-Banach theorem, we can extend the operators T and T ∗ from P(D) to the

space EM (D) as a linear and bounded operator. Then for these extiension T := EM (D)→ EM (G) and
T ∗ := EM (D)→ E∗M (G−) we have the representations

T (g)(z) =
1

2πi

∫
T

g(w)ψ′(w)

ψ(w)− z
dw , z ∈ G, g ∈ EM (D) ,

T ∗(g)(z) =
1

2πi

∫
T

g(w)ψ′1(w)

ψ1(w)− z
dw , z ∈ G−, g ∈ EM (D) .

In the proof of Theorem 1.1 and Theorem 1.2 we use the following Lemmas:
Lemma 2.1. Let Γ be a Dini-smooth curve. Furter let g be an analytic function in D which has

the Taylor expansion g (w) =
∞∑
s=0

cs (g)ws.

1. If g ∈ EM (D) , then T (g) has the Faber coefficients cs (g) , k = 0, 1, 2, ...
2. If g ∈ EM (D) , then T ∗ (g) has the Faber coefficients cs (g) , k = 0, 1, 2, ...
Proof. Let’s prove the second case first. Let gr (w) := g (rw) , 0 < r < 1. It is clear that g ∈

E1 (D) . The function g coincides with the Poisson integral of its boundary function. Then using [34,
Th. 10 ] we obtain

‖gr − g‖ =
∥∥g (reiθ)− g (eiθ)∥∥

LM (T)
→ 0, r → 1−.

The operator T ∗ is bounded in the Orlicz space LM (Γ) . Hence we conclude that

‖T ∗ (gr)− T ∗ (g)‖LM (Γ) → 0, as r → 1−. (2.1)

Note that the series
∞∑
s=0

cs (g) w s is uniformly convergent for |w| = r < 1, Therefore, the series

∞∑
s=0

cs (g) rsw s converges uniformly on T. Then we can write the following expansion for the operator:

T ∗ (gr) (z) = − 1

2πi

∫
T

gr (w)ψ′1 (w)

ψ′1 (w)− z
dw

=
∞∑
s=0

cs (g) r s
{
− 1

2πi

∫
T

wsψ′1 (w)

ψ′1 (w)− z
dw

}

=
∞∑
s=0

cs (g) r sF ∗s (1/z) , z ∈ G−.

Taking the limit as z∗ → z ∈ Γ along all non-tangential paths outside Γ, we have

T ∗ (gr) (z) =
∞∑
s=0

cs (g) r sF ∗s (1/z) , (2.2)

for z ∈ Γ. Consideration of (2.2) and [18 p.43, Lemma 3 ] gives us

bs (T ∗ (gr)) =
1

2πi

∫
T

T ∗ (gr)ψ1 (w)

ws+1
dw

=
1

2πi

∫
T

∞∑
k=0

ck (g) rkF ∗k (ψ1 (w))

ws+1
dw

=
∞∑
k=0

ckrk
1

2πi

∫
T

F ∗k (ψ1 (w))

ws+1
dw = csr

s.
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Hence for r → 1− we have

bs (T ∗ (gr))→ cs. (2.3)

Using (1.11), Hölder inequality for the space LM (Γ) and [36, Theorem 2.1] we find that

|bs (T ∗ (gr))− bs (T ∗ (g))| =
∣∣∣∣ 1

2πi

∫
T

[T ∗ (gr)− T ∗ (g)]ψ1 (w)

wk+1
dw

∣∣∣∣
≤ 1

2π

∫
T
|[T ∗ (gr)− T ∗ (g)]|ψ1 (w) dw

=
1

2π

∫
Γ

|[T ∗ (gr)− T ∗ (g)] (z)| |ϕ′1 (z)| |dz|

≤ c

2π

∫
Γ

|[T ∗ (gr)− T ∗ (g)] (z)| |dz|

≤ c

2π
‖T ∗ (gr)− T ∗ (g)‖LM (Γ) .

(2.4)

Use of (2.1) and (2.4) gives us

bs (T ∗ (gr))→ bs (T ∗ (g)) , r → 1−. (2.5)

Then from (2.3) and (2.5) we conclude that

bs (T ∗ (g)) = cs (g) , s = 0, 1, 2, ...

The second case of Lemma 2.1 is proved. The proof of the first case of Lemma 2.1 is done similarly
to the proof of the second case. 2

Lemma 2.2. Let {λk}∞0 be a sequence which satisfies the condition (1.14). If the function g ∈
Em (D) has the Taylor series

g (w) =
∞∑
s=0

cs (g) w s, w ∈ D ,

then there exists a function g∗ ∈ Em (D) which has the Taylor series

g∗ (w) =
∞∑
s=0

λscs (g) w s, w ∈ D

and satisfies ‖g∗‖LM (T) ≤ c ‖g‖LM (T) .

Proof. βs (g) (s = ...− 1, 0, 1, ..) denote the Fourier coefficients of the boundary function of g. By
Theorem 3.4 in [16, p.38] we have

βs (g) =

{
cs (g) , s ≥ 0;

0, s < 0.

Using the proof method of Theorem 2 in [34], we can show that there is a function v ∈ LM (T) with
Fourier coefficients βs (v) = λsβs (g) and ‖v‖LM (T) ≤ c ‖g‖LM (T) . If we write g∗ = v+, then g∗ ∈
EM (D) . For Taylor coefficients of g∗, we have by (1.7)

cs (g∗) = cs
(
v+
)

=
1

2π

∫
T

v+ (w)

ws+1
dw =

1

2π

∫
T

v (w)

ws+1
dw +

1

2π

∫
T

v− (w)

ws+1
dw

=
1

2π

∫
T

v (w)

ws+1
dw = βk (v) = λsβs (g) = λscs (g) , s = 0, 1, 2, ...

Therefore, we have

‖g∗‖LM (T) =
∥∥v+

∥∥
LM (T)

≤ c ‖v‖LM (T) ≤ ‖g‖LM (T) .

The proof of Lemma 2.2 is completed. 2
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3. Proof of the main results

Proof of Theorem 1.1 . Let f ∈ EM (G) . Using (1.12) we have f0 (w) = f+
0 (w) − f−0 (w). Then

by the definitions of the coefficients ak (f) we get

ak (f) =
1

2πi

∫
T

f0 (w)

wk+1
dw =

1

2πi

∫
T

f+
0 (w)

wk+1
dw − 1

2πi

∫
T

f−0 (w)

wk+1
dw

=
1

2πi

∫
T

f+
0 (w)

wk+1
dw = ck

(
f+

0

)
, k = 0, 1, 2....

That is the Faber coefficients of f are the Taylor coefficients of f+
0 (w) at the orgin. Then for the

fungtion f+
0 the Taylor expansion

f+
0 (w) :=

∞∑
k=0

ck (f)wk, w ∈ D

holds. By virtue of Lemma 2.2, there is a function F0 ∈ EM (D) which has the Taylor coefficents
ck (F0) = λkak (f) , k = 0, 1, 2, ...and the following inequality holds:

‖F0‖LM (T) ≤ c15

∥∥f+
0

∥∥
LM (T)

.

Then by [20] T (F0) ∈ EM (G) for F0 ∈ EM (D) . It is clear that according to Lemma 2.1 the Faber
coefficients of T (F0) are ck (F0) = λkak (f) . Then we can write the following expansion for T (F0) :

T (F0) (z) ∼
∞∑
k=0

λkak (f)Fk(z), z ∈ G. (3.1)

Using the boundedness of the operator T, (3.1) and the boundedness of the Cauchy singular operator
in LM (T) we have

‖T (F0)‖LM (Γ) ≤ ‖T‖ ‖F0‖LM (T) ≤
∥∥f+

0

∥∥
LM (T)

≤ c16 ‖f0‖LM (T) ≤ c17 ‖f‖LM (Γ) .

If F := T (F0) is written in the last inequality, the desired result in Theorem 1.1 is obtained. The
proof of Theorem 1.1 is completed. 2

Proof of Theorem 1.2. By considering the formula of the Faber coefficient of f ∈ E∗M (G−) ,

bk (f) =
1

2πi

∫
T

f1 (w)

wk+1
dw =

1

2πi

∫
T

f+
1 (w)

wk+1
dw − 1

2πi

∫
T

f−1 (w)

wk+1
dw

=
1

2πi

∫
T

f+
1 (w)

wk+1
dw = ck

(
f+

1

)
, k = 1, 2...

That is the Faber coefficients of f are the Taylor coefficients of f+
0 (w) at the orgin. Using Lemma

2.2 there exists a function F1 ∈ EM (D) the following expansion and inequality holds:

F1 (w) =
∞∑
k=0

λkbk (f)wk, w ∈ D,

and
‖F1‖LM (T) ≤ c18

∥∥f+
1

∥∥
LM (T)

.

If F := T ∗ (F1) is written and using Lemma 2.1, we have
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F (z) =
∞∑
k=1

λkbk (f)F ∗k (1/z) , z ∈ G−.

Taking into account the boundedness of the operator T ∗, boundedness of the singular operator in
LM (T) [35] and the formulas (1.6) we conclude that

‖F‖LM (Γ) = ‖T ∗ (F1)‖LM (Γ) ≤ ‖T
∗‖ ‖F1‖LM (T)

≤ c19

∥∥f+
1

∥∥
LM (T)

≤ c20 ‖f1‖LM (T) ≤ c21 ‖f‖LM (Γ) .

Thus, the required result was obtained. 2

Proof of Theorem 1.3. Let {rk}∞0 be the sequence of Rademacher functions and let t ∈ [0, 1] be
not dyadic rational number. If we set λ0 := r0 (t) and λj = rk (t) 2k−1 ≤ j ≤ 2k, then the sequence
{λj}∞0 satisfies the condition (1.14). By Theorem 1.1 there exists a function F ∈ EM (G) such that

F (z) ∼
∞∑
j=0

λjaj (f)Fj (z) =
∞∑
k=0

rk (t) ∆k (f) (z) (3.2)

and
‖F‖LM (Γ) ≤ c22 ‖f‖LM (Γ) .

On the other hand since

F (z) ∼
∞∑
k=0

rk (t) ∆k (f) (z)

and {λj}∞0 satisfies (1.14), there is F ∗ ∈ EM (G) for which

F ∗ (z) ∼
∞∑
k=0

λkrk (t) ∆k (f) (z) =
∞∑
k=0

ak (f)Fk (z)

and
‖F ∗‖LM (Γ) ≤ c23 ‖F‖LM (Γ)

holds. Since there is no two different functions in EM (G) have the same Faber series we have F ∗ = f.
Then we find that

c24 ‖f‖LM (Γ) ≤ ‖F‖LM (Γ) ≤ c25 ‖f‖LM (Γ) . (3.3)

Using Holder inequality for f ∈ LM (Γ) and g ∈ LN (Γ) , (3.2) and (1.1) we obtain

∫
Γ

|F (z) g (z)| dz

=

∫
Γ

∣∣∣∣∣
∞∑
k=0

rk (t) ∆k (f) (z) ∆k (g) (z)

∣∣∣∣∣ dz ≤
∫

Γ

∞∑
k=0

|rk (t) ∆k (f) (z) ∆k (g) (z)| dz

≤ c

∫
Γ

[
∞∑
k=0

|∆k (f) (z)|2
]1/2 [ ∞∑

k=0

|∆k (g) (z)|2
]1/2

≤ c

∥∥∥∥∥∥
[
∞∑
k=0

|∆k (f) (z)|2
]1/2

∥∥∥∥∥∥
LM (Γ)

∥∥∥∥∥∥
[
∞∑
k=0

|∆k (g) (z)|2
]1/2

∥∥∥∥∥∥
LN (Γ)

≤ c

∥∥∥∥∥∥
[
∞∑
k=0

|∆k (f) (z)|2
]1/2

∥∥∥∥∥∥
LM (Γ)

‖g‖LN (Γ) .

Now taking supremum in the last inequality for all functions g ∈ LN (Γ) satisfying ‖g‖LM (Γ) ≤ 1, we
find that
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‖F‖LM (Γ) ≤ c26

∥∥∥∥∥∥
[
∞∑
k=0

|∆k (f) (z)|2
]1/2

∥∥∥∥∥∥
LM (Γ)

. (3.4)

Using the proof method in study [44] (see. also [46], Vol 1, p.213) inequality,

‖F‖LM (Γ) ≥ c27

∥∥∥∥∥∥
[
∞∑
k=0

|∆k (f) (z)|2
]1/2

∥∥∥∥∥∥
LM (Γ)

(3.5)

is proven similary to inequality (3.4). The relations (3.3), (3.4) and (3.5) immediately yield (1.15).
The proof of Theorem 1.3 is completed. 2

Note that the proof of Theorem 1.4 is similar to proof of Theorem 1.3.
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Abstract. The problem of recovering surfaces by the total or extrinsic curvature is related to the
solution of the nonlinear elliptic equation of the Monge-Ampere type. Using the geometric method,
the existence and uniqueness of a solution to the Monge-Ampere equation is shown in the problem of
recovering a surface by its total curvature in isotropic space. In this article, an exact solution to the
Dirichlet problem for a ring domain is found if the total curvature function is given exact form. In
this, isotropic space geometry is used.
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1. Introduction

Initially, in the Euclidean space, A.D. Alexandrov posed the problem of recovering of convex poly-
hedra by extrinsic curvature and proved the existence and uniqueness of a solution[1]. Then, he
generalized this problem for convex surfaces [2]. That is, this problem was solved if the extrinsic
curvature is a non-negative, complete additive set function defined on the Borel set. A.V. Pogorelov,
using the property of monotonicity of the extrinsic curvature of the convex polyhedra, showed that a
convex polyhedron exists and is unique by a given monotonic function [17]. I. Ya. Bakelman stud-
ied the connection between the extrinsic curvature of convex surfaces and the second-order nonlinear
Monge-Ampere equation [10]. In this case, I. Ya. Bakelman showed that the solution of the generalized
Dirichlet problem for the Monge-Ampere equation exists and is unique by estimating the area of the
normal image of the surface [11]. The listed problems were solved only if the domain D ⊂ R2 is convex
where the function is defined. By applying the geometry of the Galilean space, A. Artykbaev solved
the problem of the existence and uniqueness of the convex surface according to the given extrinsic
curvature if the domain D ⊂ R2 is non-convex [3]. Also, in the article [4], the concept of generalized
extrinsic curvature is given, and the existence and uniqueness of the solution of the Monge-Ampere
equation in the multi-connected domain is proved. In addition, Sh.Sh. Ismoilov found a solution for
the family of dual translation surfaces, using the geometry of isotropic space, which is the total curva-
ture is the product of two functions with separate variables [5]. If the total curvature in the isotropic
space is zero, in [8, 12, 15], translation surfaces are classified according to their analytical equation.
M.E. Aydin and other co-authors studied the class of different surfaces which is the total curvature is
equal to a non-zero constant [7, 9, 20]. In this paper, we consider the problem of recovering surfaces
in isotropic space where the total curvature is a function defined in the ring domain, and find an exact
solution by solving the Dirichlet problem for the Monge-Ampere equation.

2. Preliminaries

It is known that the Monge-Ampere equation is generally as follows:

zxxzyy − z2
xy = φ(x, y, z, zx, zy). (2.1)

In this case, if φ(x, y, z, zx, zy) > 0, the equation is an elliptic and its solution is a convex surface
equation.

Now, if we consider this equation in the semi-Euclidean space, that is, in the isotropic space, it will
be as follows [14]:

zxxzyy − z2
xy = K(x, y). (2.2)
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2.1. Isotropic space geometry. Let there be given an affine space A3 with the coordinate system

O{e1, e2, e3}. If the inner product of two vectors
−→
X{x1, x2, x3} and

−→
Y {y1, y2, y3} is determined in this

space as follows:

(X,Y ) =

{
(X,Y )1 = x1y1 + x2y2 (X,Y )1 6= 0,

(X,Y )2 = x3y3 (X,Y )1 = 0.
(2.3)

Then this space is called an isotropic space[6].

In the isotropic space the norm of the vector
−→
X is determined by the

−→
X =

√
(
−→
X,
−→
X ). From this,

the distance between two points A(x1, x2, x3) and B(y1, y2, y3) is calculated by the following formula:

d =

{√
(x2 − x1)2 + (y2 − y1)2 if

√
(x2 − x1)2 + (y2 − y1)2 6= 0,

|y3 − x3| if
√

(x2 − x1)2 + (y2 − y1)2 = 0.
(2.4)

In the isotropic space, the motion is given by the following and this preserves the distance (2.4):
x′ = x cosα− y sinα+ a,

y′ = x sinα+ y cosα+ b,

z′ = h1x+ h2y + z + c.

(2.5)

Let the regular surface be given by the following vector equation in this space:

~r(x, y) = r1(x, y)~e1 + r2(x, y)~e2 + r3(x, y)~e3. (2.6)

Where, ri(x, y) are the parametric functions of the surface, and {~e1, ~e2, ~e3} are the basis vectors.
The first and second fundamental forms of the surface are given by the following formulas:

I = ds2 = Edu2 + 2Fdudv +Gdv2,

II = Ldu2 + 2Mdudv +Ndv2.

The coefficients E,F,G and L,M,N of the first and second fundamental forms of the surface in
isotropic space are calculated as follows:

E = ~r2
x = r2

1x + r2
2x,

F = ~rx~ry = r1xr1y + r2xr2y,

G = ~r2
y = r2

1y + r2
2y,


L = (~rxx, ~n),

M = (~rxy, ~n),

N = (~ryy, ~n).

(2.7)

And from this, as an analogue of Euclidean space, total curvature in isotropic space is determined
by the following formula and differs only in the calculation of the coefficients of the first and second
fundamental forms:

K =
LN −M2

EG− F 2
. (2.8)

If the surface is one-valued projected onto the plane Oxy, then the total curvature is as follows[13]:

K = LN −M2, (2.9)

where, L = zxx, M = zxy, N = zyy. So, we determine equation (2.2) by these coefficients.

3. Main result

Let there be given a regular surface F by explicit form z = z(x, y) in the domain D ⊂ R2. Then its
total curvature is determined by the (2.9) in the isotropic space [16].

In this space, we consider the domain D ⊂ R2 which is bounded by the curves L1 : x2 +y2 = b2 and
L2 : x2 + y2 = a2 on the Oxy plane. Let a spatial closed curve H be given and projected one-valued
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onto the L2. The domain D ⊂ R2 is a doubly-connected domain in the form of the ring and it is given
by the following equation:

D =
{

(x, y) : b2 ≤ x2 + y2 ≤ a2, 0 < b < a
}
. (3.1)

We consider the problem of recovering the surface by the total curvature which is being a function
defined in the ring domain. That is, we find the analytical equation of the surface by solving the
Monge-Ampere equation. For this, we transfer equation (2) to the polar coordinate system. It is
known that the connection between polar and Cartesian coordinates is as follows:{

x = ρ cosϕ,
y = ρ sinϕ.

(3.2)

If we determine the first- and second-order and mixed partial derivatives of the equation z = z (x, y)
with respect to ρ and ϕ, we obtain the following expressions:

zρ = zx cosϕ+ zy sinϕ , zϕ = ρ (−zx sinϕ+ zy cosϕ) ,

zρρ = zxxcos2ϕ+ zyysin
2ϕ+ zxy sin 2ϕ,

zϕϕ = ρ2
(
zxxsin

2ϕ+ zyycos2ϕ− zxy sin 2ϕ
)
− ρ (zx cosϕ+ zy sinϕ) ,

zρϕ = −ρ sin 2ϕ
2

(zxx − zyy) + zxyρ cos 2ϕ+ (−zx sinϕ+ zy cosϕ) .

From this,
zρρ = zxxcos2ϕ+ zyysin

2ϕ+ zxy sin 2ϕ, (3.3)

zϕϕ
ρ2

+
zρ
ρ

= zxxsin
2ϕ+ zyycos2ϕ− zxy sin 2ϕ, (3.4)

zρϕ
ρ
− zϕ
ρ2

= −sin 2ϕ

2
(zxx − zyy) + zxy cos 2ϕ. (3.5)

By simplifying the expressions (3.3),(3.4),(3.5) we get the following:{
zxx + zyy = zρρ + zρ

ρ
+ zϕϕ

ρ2 ,

zxx − zyy =
(
zρρ − zρ

ρ
− zϕϕ

ρ2

)
cos 2ϕ− 2

(
zρϕ
ρ
− zϕ

ρ2

)
sin 2ϕ.

(3.6)

From equation (3.6), we find the following for the second-order partial derivatives:

zxx =
1

2

(
zρρ +

zρ
ρ

+
zϕϕ
ρ2

)
+

1

2

((
zρρ −

zρ
ρ
− zϕϕ

ρ2

)
cos 2ϕ−

(
zρϕ
ρ
− zϕ
ρ2

)
sin 2ϕ

)
, (3.7)

zyy =
1

2

(
zρρ +

zρ
ρ

+
zϕϕ
ρ2

)
− 1

2

((
zρρ −

zρ
ρ
− zϕϕ

ρ2

)
cos 2ϕ−

(
zρϕ
ρ
− zϕ
ρ2

)
sin 2ϕ

)
. (3.8)

By putting the second-order partial derivatives (3.7), (3.8) into the formula (3.5), we find the mixed
derivative:

zxy =
1

2

(
zρρ −

zρ
ρ
− zϕϕ

ρ2

)
sin 2ϕ+

(
zρϕ
ρ
− zϕ
ρ2

)
cos 2ϕ. (3.9)

If we put the partial derivatives (3.7), (3.8) and (3.9) into the Monge-Ampere equation, we get its
form in the polar coordinates:

zxxzyy − z2
xy =

1

ρ2

[
zρρzϕϕ − z2

ρϕ + ρzρzρρ +
2zϕzρϕ
ρ

−
z2
ϕ

ρ2

]
. (3.10)

The following main theorem is holds:
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Theorem 3.1. If the total curvature is given by the form

K (x, y) =
a2 + b2 − 2 (x2 + y2)√

a2 − x2 − y2
√
x2 + y2 − b2

(3.11)

and the Dirichlet problem for equation (2.2) satisfies the following boundary conditions:

z |L1
= 0, z |L2

= H H >> 0. (3.12)

Here, H− is a sufficiently large positive number.
Then the solution of the Monge-Ampere equation in the ring domain D is as follows:

z (x, y) =

√
x2 + y2

2

(√
a2 − x2 − y2 +

√
x2 + y2 − b2

)
+
a2

2
arcsin

√
x2 + y2

a
− (3.13)

−b
2

2
ln
(√

x2 + y2 +
√
x2 + y2 − b2

)
+A

√
x2 + y2 +B,

where,

A =
1

a− b
(H − (a− b)

√
a2 − b2

2
− πa2

4
+
a2

2
arcsin

b

a
+
b2

2
ln(a+

√
a2 − b2)− b2

2
ln b),

B =
1

a− b
(
πa2b

4
− bH − a3

2
arcsin

b

a
− b3

2
ln(a+

√
a2 − b2) +

ab2

2
ln b).

Proof. Taking into account the total curvature, if we write equation (2.2) in polar coordinates, it will
be the following form:

1

ρ2

[
zρρzϕϕ − z2

ρϕ + ρzρzρρ +
2zϕzρϕ
ρ

−
z2
ϕ

ρ2

]
=

a2 + b2 − 2ρ2

√
a2 − ρ2

√
ρ2 − b2

. (3.14)

We seek the solution in the following special form [18, 19]:

z (ρ, ϕ) = f (ρ) + ρg (ϕ) . (3.15)

By finding the first and second order partial derivatives of the expression (3.15)

zρ = f ′ + g, zϕ = ρg′, zρρ = f ′′, zϕϕ = ρg′′, zρϕ = zϕρ = g′.

If we put these expressions to (3.14), then we have the following equality:

1
ρ2

[
f ′′ · ρg′′ − g′2 + ρ (f ′ + g) f ′′ + 2ρg′2

ρ
− ρ2g′2

ρ2

]
= a2+b2−2ρ2√

a2−ρ2
√
ρ2−b2

⇒

⇒ f ′′ · (g′′ + g) + f ′ · f ′′ = ρ

(
a2 + b2 − 2ρ2

√
a2 − ρ2

√
ρ2 − b2

)
. (3.16)

In the formula (3.16), we can write the total curvature as:

f ′′(g′′ + g) + f ′ · f ′′ = ρ

(√
a2−ρ2√
ρ2−b2

−
√
ρ2−b2√
a2−ρ2

)
.

From this,

g′′ + g =

ρ

(√
a2−ρ2√
ρ2−b2

−
√
ρ2−b2√
a2−ρ2

)
− f ′ · f ′′

f ′′
= a0, (3.17)

where a0 is a constant.
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Thus, from the expression (3.17), we obtain two ordinary differential equations with separate vari-
ables. Here, f ′′ 6= 0 ⇒ f (ρ) 6= c0ρ+ c1.
The general solution of the left side of equation (3.17) is as follows:

g (ϕ) = C1 cosϕ+ C2 sinϕ+ a0, (3.18)

where, C1, C2 are constants.
Now, we write the expression on the right side of (3.17) as follows:

f ′ · f ′′ + a0 · f ′′ = ρ

(√
a2−ρ2√
ρ2−b2

−
√
ρ2−b2√
a2−ρ2

)
.

Thus, (
f ′2

2
+ a0f

′

)′
= ρ

(√
a2 − ρ2

√
ρ2 − b2

−
√
ρ2 − b2

√
a2 − ρ2

)
. (3.19)

By integrating the above expression (3.19), we will write as follows:

f ′2 + 2a0f
′

2
= I =

∫
ρ

√
a2 − ρ2

√
ρ2 − b2

dρ−
∫
ρ

√
ρ2 − b2

√
a2 − ρ2

dρ. (3.20)

By using the method of integration by parts, we obtain:

I =
∫ √

a2 − ρ2d
(√
ρ2 − b2

)
+
∫ √

ρ2 − b2d
(√
a2 − ρ2

)
=
√
a2 − ρ2

√
ρ2 − b2 +

∫
ρ

√
ρ2−b2√
a2−ρ2

dρ+

+
√
ρ2 − b2

√
a2 − ρ2 −

∫
ρ

√
a2−ρ2√
ρ2−b2

dρ = 2
√
a2 − ρ2

√
ρ2 − b2 − I.

From this, I =
√
a2 − ρ2

√
ρ2 − b2 +D1. We will write (3.20) as follows:

f ′2 + 2a0f
′ + a2

0 − a2
0 = 2

√
a2 − ρ2

√
ρ2 − b2 + 2D1 ⇒

(f ′ + a0)
2

= 2
√
a2 − ρ2

√
ρ2 − b2 +

(
2D1 + a2

0

)
= 2

√
a2 − ρ2

√
ρ2 − b2 + D̃1, (3.21)

where D̃1 = 2D1 + a2
0 is a constant.

On the right side of (3.21), to use the completing the square method, the following expression must

be valid, that is D̃1 = a2 − b2. That is,

(f ′ + a0)
2

= a2 − b2 + 2
√
a2 − ρ2

√
ρ2 − b2 = a2 − ρ2 + 2

√
a2 − ρ2

√
ρ2 − b2 + ρ2 − b2 =

=
(√
a2 − ρ2 +

√
ρ2 − b2

)2
,

f ′ + a0 = ±
(√
a2 − ρ2 +

√
ρ2 − b2

)
.

Here we consider surfaces with one-sided convexity. Therefore, we consider only one equation:

f ′ + a0 =
√
a2 − ρ2 +

√
ρ2 − b2.

From here, integrating again, we find the following:

f = −a0ρ+
∫ √

a2 − ρ2dρ+
∫ √

ρ2 − b2dρ,

f (ρ) = −a0ρ+ ρ
2

√
a2 − ρ2 + a2

2
arcsin ρ

a
+ ρ

2

√
ρ2 − b2 − b2

2
ln
∣∣ρ+

√
ρ2 − b2

∣∣+D2.

Now, putting the found expressions into (3.15), we get the following:

z (ρ, ϕ) =
ρ

2

(√
a2 − ρ2 +

√
ρ2 − b2

)
+
a2

2
arcsin

ρ

a
− b2

2
ln
∣∣∣ρ+

√
ρ2 − b2

∣∣∣−
−a0ρ+D2 + C1ρ cosϕ+ C2ρ sinϕ+ a0ρ =

=
ρ

2

(√
a2 − ρ2 +

√
ρ2 − b2

)
+
a2

2
arcsin

ρ

a
− b

2

2
ln
∣∣∣ρ+

√
ρ2 − b2

∣∣∣+C1ρ cosϕ+C2ρ sinϕ+D2. (3.22)

Using the boundary conditions (3.12), we find the constants:
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b
2

√
a2 − b2 + a2

2
arcsin b

a
− b2

2
ln b+ b (C1 cosϕ+ C2 sinϕ) +D2 = 0,

a
2

√
a2 − b2 + a2

2
· π

2
− a2

2
ln
(
a+
√
a2 − b2

)
+ a (C1 cosϕ+ C2 sinϕ) +D2 = H.

Thus,

D2 =
1

a− b
(
πa2b

4
− bH − a3

2
arcsin

b

a
− b3

2
ln(a+

√
a2 − b2) +

ab2

2
ln(b)), (3.23)

C1 cosϕ+C2 sinϕ =
1

a− b
(H − (a− b)

√
a2 − b2

2
− πa2

4
+
a2

2
arcsin

b

a
+
b2

2
ln(a+

√
a2 − b2)− b2

2
ln b).

(3.24)
By putting the (3.23)-(3.24) expressions into equation (3.22), we find the surface equation given in

the theorem. Also, taking into account that the interior boundary is L1 : x2 +y2 = b2 and the exterior
boundary is L2 : x2 + y2 = a2, it can be shown that the solution obtained in the theorem satisfies the
boundary conditions. Theorem is completely proved. �

Example : If we consider L1 : x2 + y2 = 1 and L2 : x2 + y2 = 25 and H = 10, then the graph of
the surface is the following:
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1. Introduction

AW*-algebras are a generalization of von Neumann algebras (W*-algebras), and naturally the
question of generalizing the results obtained for W*-algebras to AW*-algebras arises, which is quite
relevant. It is known that in the study and classification of von Neumann algebras, along with
projections, the concept of a trace on an algebra plays an important role. For example, [1], it was
proved that a von Neumann algebra is finite if and only if there exists a separating family of finite
normal traces on it. Actually, for this reason, C*-algebras have been studied relatively poorly,
some of them do not even have nontrivial projections, not to mention traces. On the other hand,
AW*-algebras have been studied relatively better, since these algebras have a sufficient number of
projections, but these algebras also have problems with the trace. There are papers (see, for example,
[30]) where, for convenience, the existence of a trace on the AW*-algebra is assumed. And so, in
1982, in the paper of Blackadar and Handelman [3] an analogue of a trace, called a quasitrace, was
introduced. Despite the fact that this concept does not completely replace a trace, they and some
researchers managed to obtain an analogue of the results available for traces. This paper presents
Kaplansky’s question: ”Is every quasitrace on a C-algebra linear, i.e. a trace?” This problem remains
open. The last attempt to solve this problem was presented in [4], where it was proved that in ex-
act C*-algebras every quasitrace is linear, i.e. in this case Kaplansky’s problem has a positive solution.

In this paper, a real analogue of a quasitrace is given, and its connection with the quasitrace of
the enveloping C*-algebra is found. Similar to the complex case, some interesting properties of a
quasitrace and the corresponding metric for real C*-algebras are obtained.

2. Preliminaries

A Banach *-algebra A over a field C is called a C*-algebra if ‖x∗x‖ = ‖x‖2, for any x ∈ A. Let
B(H) be the algebra of all bounded linear operators, acting in the complex Hilbert space H. A weakly
closed *-subalgebra M ⊂ B(H) with identity is called W*-algebra. The center Z(M) of an algebra
M is the set of elements of M that commute with each element of M . A W*-algebra M is called a
factor if Z(M) consists of complex multiples of 1I, i.e. Z(M) = {λ1I : λ ∈ C}.

Let A be a ring and S a non-empty subset of A. Assume that R(S) = {x ∈ A | sx = 0 for all
s ∈ S} and call R(S) the right annihilator of S. Similarly, L(S) = {x ∈ A | xs = 0 for all s ∈ S}
denotes the left annihilator of S. A Baer *-ring is a ring A such that for every non-empty subset S of
A, R(S) = gA for a suitable projection g. The equality L(S) = ((R(S∗)))∗ = ((hA))∗ = Ah (for some
projection h) shows that this definition can also be given through the left annihilator. AW*-algebra
is a C*-algebra, which is also a Baer *-ring. It is known [5] that every W*-algebra is an AW*-algebra,
but the converse is not true.

3. Main results

Definition 3.1. [3]. Let A be a C*-algebra with unity. A quasitrace τ on A is a function τ : A→ C
that satisfies the following conditions
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(i) τ(x∗x) = τ(xx∗) ≥ 0, x ∈ A;

(ii) τ(a+ ib) = τ(a) + iτ(b), for a, b ∈ Ah;

(iii) τ is linear on an abelian C*-subalgebra B of A.

We give a definition of a quasitrace in the real case.

Definition 3.2. Let R be a unital real C*-algebra. A quasitrace τ on R is a function τ : R→ R that
satisfies the following conditions

(i′) τ(x∗x) = τ(xx∗) ≥ 0, x ∈ R;

(ii′) τ(a+ b) = τ(a), for a ∈ Rh, b ∈ Rk;

(iii′) τ is linear on an abelian C*-subalgebra B of R.

We can see that definitions of quasitrace in real and complex cases are slightly different. In the
next two theorems we naturally consider the restriction of a quasitrace from A to R, and conversely,
the extension of a quasitrace from R to A.

Theorem 3.3. Let R be a unital real C*-algebra. If τ is a quasitrace on the C*-algebra A = R+ iR,
then its restriction to the real C*-algebra R, defined as

τ(a+ b) = τ(a), a ∈ Rh, b ∈ Rk (3.1)

is a quasitrace on R.

Proof. (i) Let x ∈ R and x = a + b, where a ∈ Rh, b ∈ Rk. Then by (3.1) we obtain
τ(x∗x) = τ(a2 − b2 + ab − ba) = τ(a2 − b2), since a2 − b2 ∈ Rh and ab − ba ∈ Rk. Similarly,
τ(xx∗) = τ(a2 − b2 + ba − ab) = τ(a2 − b2). Thus, we obtain the equality τ(x∗x) = τ(xx∗). Since
a2 − b2 ≥ 0, then τ(x∗x) = τ(a2 − b2) ≥ 0.

(ii) By (3.1) we have τ(a+ b) = τ(a) = τ(a+ 0) = τ(a).

(iii) Let B be an arbitrary abelian real C*–subalgebra of R. Consider the complexification Bc =
B + iB, which is an abelian C*-subalgebra of A. By Definition 3.1, the quasitrace τ is linear on
Bc . We show that the restriction of τ to B is linear. Let λ ∈ R and let x, y ∈ B be such that
x = a+ b, y = c+ d, a, c ∈ Rh and b, d ∈ Rk. Since λa+ c ∈ Rh and λb+ d ∈ Rk, then

τ(λx+ y) = τ(λa+ c+ λb+ d) = τ(λa+ c).

Since a, c ∈ Rh ⊂ Bc, then by the linearity of τ on Bc we get

τ(λa+ c) = λτ(a) + τ(c) = λτ(a+ b) + τ(c+ d) = λτ(x) + τ(y).

Therefore, τ is linear on B. Thus τ is a quasitrace on R. The theorem is proved.
�

Theorem 3.4. Let R be a unital real C*-algebra. If τ is a quasitrace on R, then its extension τ to
A = R+ iR, defined as τ(x+ iy) = τ(x) + iτ(y), is a quasitrace on A, where x, y ∈ R.

Proof. Recall that the algebra A = R+iR can be embedded in M2(A) as x→ e11⊗x and the mapping

π : M2(A)→M2(C)⊗A defined as π([aij]) =
∑2

i,j=1 eij ⊗ aij is an *-isomorphism, that is,(
a11 a12

a21 a22

)
→ e11 ⊗ a11 + e12 ⊗ a12 + e21 ⊗ a21 + e22 ⊗ a22.

Let x = c+ id, where c, d ∈ R. Then

τ(x∗x) = τ((c+ id)∗(c+ id)) = τ(c∗c+ d∗d+ i(c∗d− d∗c))
= τ(c∗c+ d∗d) + iτ(c∗d− d∗c).
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Since c∗d − d∗c ∈ Rk, then applying the equality τ(a + b) = τ(a) (a ∈ Rh, b ∈ Rk) we obtain
τ(c∗c+ d∗d) + iτ(c∗d− d∗c) = τ(c∗c+ d∗d). Since τ(x) = τ(x⊗ e11), then

τ(x∗x) = τ(c∗c+ d∗d) = τ((c∗c+ d∗d)⊗ e11) = τ

(
c∗c+ d∗d 0

0 0

)

= τ

((
c∗ d∗

0 0

)(
c 0
d 0

))
= τ

((
c 0
d 0

)(
c∗ d∗

0 0

))

= τ

(
cc∗ cd∗

dc∗ dd∗

)
= τ(cc∗ + dd∗) = τ (cc∗ + dd∗) + iτ ((cd∗ − dc∗))

= τ((c+ id)(c+ id)∗) = τ(xx∗).

(ii) Let x, y ∈ Ah and x = a + ib, y = c + id. Since x = x∗, then a = a∗, b∗ = −b, i.e. a ∈ Rh,
b ∈ Rk; similarly we have c ∈ Rh, d ∈ Rk. Since τ(b) = τ(d) = 0, then we get

τ(x+ iy) = τ(a− d+ i(b+ c)) = τ(a− d) + iτ(b+ c) =

= τ(a) + iτ(c) = τ(a) + iτ(b) + i(τ(c) + iτ(d))

= τ(a+ ib) + iτ(c+ id) = τ(x) + iτ(y).

(iii) Let Bc be an abelian C*-subalgebra of the AW*- algebra A. Since A = R+ iR, then for ∀x ∈ Bc
there are such a, b ∈ R: x,= a+ ib, therefore Bc = B1 + iB2, Bi ⊂ R, for which a ∈ B1,b ∈ B2.

1) Since Bc 3 0 = 0 + i0 and Bc 3 1I = 1I + i0, Bc 3 i1I, then 0,1I ∈ Bi, i = 1, 2.

If Bc = iB2, then for λ ∈ C, λ = λ1 + iλ2, x = ia, y = ib, a, b ∈ B2 we have

τ(λx+ y) = τ((λ1 + iλ2)ia+ ib) = τ(−λ2a+ i(λ1a+ b)) = τ(−λ2a) + iτ(λ1a+ b)

= −λ2τ(a) + iλ1τ(a) + iτ(b) = i(λ1 + iλ2)τ(a) + iτ(b) = λ(0 + iτ(a)) + (0 + iτ(b))

= λτ(x) + τ(y),

i.e. in this case τ is linear.

2) Let Bc = B1 + iB2, Bi ⊂ R, B1 6= {0}. Let x = a + ic, y = b + id, a, b ∈ B1, c, d ∈ B2. Then
xy = ab − cd + i(cb + ad) and therefore, ab − cd ∈ B1, cb + ad ∈ B2. For c = d = 0 we get ab ∈ B1,
therefore B1 is an algebra, similarly B2 is an algebra. For d = 1, b = 0 we have a ∈ B2, hence B1 ⊂ B2.
Similarly, we can get B2 ⊂ B1. Thus B1 = B2. Hence Bc = B + iB. Since x∗ = a∗ − ib∗ ∈ Bc, then
a∗, b∗ ∈ B. Thus B is a real *-subalgebra.

3) Let’s show the linearity of τ on Bc:

τ(x+ y) = τ(a+ ib+ c+ id) = τ(a+ c) + iτ(b+ d)

= τ(a+ c) + iτ(b+ d) = τ(a) + τ(c) + iτ(b) + iτ(d)

= τ(a) + τ(c) + iτ(b) + iτ(d) = τ(a+ ib) + τ(c+ id)

= τ(x) + τ(y),

means τ is additive. Now let’s show homogeneity.

τ(λx) = τ((λ1 + iλ2)(a+ ib)) = τ(λ1a− λ2b+ i(λ1b+ λ2a))

= τ(λ1a− λ2b) + iτ(λ1b+ λ2a) = λ1τ(a)− λ2τ(b) + iλ1τ(b) + iλ2τ(a)

= (λ1 + iλ2)τ(a) + i(λ1 + iλ2)τ(b) = (λ1 + iλ2)(τ(a) + iτ(b))

= λτ(x).

Thus τ is linear on Bc. Theorem proved.
�

Definition 3.5. A quasitrace τ is called



124 Kim D.I., Rakhimov A.A.

• finite if τ(1I) <∞;

• semifinite if the set D = {x : τ(x∗x) <∞} is norm-dense in the algebra itself;

• faithful if τ(a) > 0, for a > 0, i.e. {x : τ(x∗x) = 0} = {0};

• extremal if it cannot be represented as the sum of two other quasitraces.

Theorem 3.6. A quasitrace τ is faithful, semifinite and extremal if and only if τ is faithful, semifinite
and extremal.

Proof. 1) Let τ be faithful, τ(a∗a) = 0, for a ∈ R. Since τ(a∗a) = τ(a∗a), then from the faithfulness
of τ we obtain that a = 0, therefore τ is faithful.

Conversely, let τ be faithful and τ(x∗x) = 0, for x ∈ A. Let x = a + ib, a, b ∈ R. Similar to the
proof of Theorem 3.4, we obtain 0 = τ(x∗x) = τ(a∗a) + τ(b∗b). Since τ(a∗a) ≥ 0 and τ(b∗b) ≥ 0, then
τ(a∗a) = τ(b∗b) = 0, and hence a = b = 0, i.e. x = 0. Therefore τ is faithful.

2). Let D1 = {a ∈ R : τ(a∗a) < ∞}. We show that D1 is dense in R. For a ∈ D1

we have τ(a∗a) = τ(a∗a) < ∞, therefore D1 ⊂ D. Also for y = ib ∈ iD1 (b ∈ D1) we have
τ(y∗y) = τ((ib)∗ib) = τ(b∗b) <∞, therefore iD1 ⊂ D. Hence D1 + iD1 ⊂ D.

Conversely, let x ∈ A and τ(x∗x) <∞, i.e. x ∈ D. Let x = a+ ib, where a, b ∈ R. Then, as shown
above, τ(x∗x) = τ(a∗a+ b∗b) + iτ(a∗b− b∗a) = τ(a∗a+ b∗b) and for the element a∗a+ b∗b we have

τ(a∗a+ b∗b) = τ

(
a∗a+ b∗b 0

0 0

)
= τ

((
a∗ b∗

0 0

)(
a 0
b 0

))

= τ

((
a 0
b 0

)(
a∗ b∗

0 0

))
= τ

(
aa∗ ab∗

ba∗ bb∗

)
= τ

(
aa∗ 0
0 bb∗

)
= τ(aa∗) + τ(bb∗) = τ(a∗a) + τ(b∗b).

Since τ(x∗x) <∞, then τ(a∗a) <∞ and τ(b∗b) <∞, i.e. a, b ∈ D1, therefore D ⊂ D1 + iD1.

Thus we get: D = D1 + iD1. Since D = D1 + iD1 and D = A = R+ iR, then D1 = R. Therefore,
τ is semifinite.

3). If τ = τ1 + τ2, then by Theorem 3.4 we have

τ(x+ iy) = τ(x) + iτ(y) = τ1(x) + τ2(x) + iτ1(y) + iτ2(y) = τ 1(x+ iy) + τ 2(x+ iy),

from here we get τ = τ 1 + τ 2.

Conversely, if τ = ϕ1 +ϕ2, then by Theorem 3.3 we have τ(a+b) = τ(a) = ϕ1(a)+ϕ2(a). Therefore
τ = τ1 + τ2, where τ1(a+ b) = ϕ1(a) and τ2(a+ b) = ϕ2(a). The theorem is proved.

�

Let A be a C*-algebra and τ be a quasitrace on A. Put ‖x‖2 = τ(x∗x)1/2, x ∈ A. The mapping
‖.‖2, called a quasi-norm, is not a norm in general. However, the following properties hold (see [4,
Lemma 3.5])

(1) τ(x+ y)1/2 ≤ τ(x)1/2 + τ(y)1/2, a, b ∈ A+;

(2) ‖x+ y‖2/32 ≤ ‖x‖2/32 + ‖y‖2/32 , x, y ∈ A;

(3) ‖xy‖2 ≤ ‖x‖‖y‖2 and ‖xy‖2 ≤ ‖x‖2‖y‖, x, y ∈ A.

Now let’s set dτ (x, y) = ||x−y||2/32 , x, y ∈ A. Then d is a metric on A and has the following properties
(see [4, Definition 3.6 and Lemma 3.7]):

– the involution x→ x∗ is continuous in the dτ -metric;
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– the sum is continuous in the dτ -metric on A;

– the product is continuous in the dτ -metric on bounded sets A;

– x→ τ(x) is continuous in the dτ -metric on A+.

The quasinorm and the corresponding metric are similarly defined in the real case.

Theorem 3.7. Let τ be an faithful, normal quasitrace on a real C*-algebra R. If τ is extremal, then

the AW*-completion R
dτ

of R is a real AW*-factor.

Proof. Let τ be the extension of τ to A = R + iR. By Theorem 3.6, the quasitrace τ is also faithful,

normal, and extremal. By [4, Proposition 4.6], the AW*-completion A
dτ

of A is an AW*-factor. Since

A
dτ

= R
dτ

+ iR
dτ

, then by [6, Proposition 4.3.1], the AW*-completion R
dτ

of R is a real AW*-factor.
The theorem is proved. �
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Abstract. In this paper, we consider the two-state Hard-Core model on the closed Cayley tree of
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phase transition.
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1. Introduction

The Hard-Core model is significant in statistical physics as a fundamental representation of a gas
consisting of particles with non-negligible sizes. In this model, the state σ(i) = 1 (resp. 0) indicates
that vertex i is occupied by a particle (resp. empty). A key constraint of the model is that no two
adjacent vertices can both be occupied, effectively preventing particles from overlapping. This model
can also be derived as a limiting case of the antiferromagnetic Ising model (see, for instance, [7]).
Moreover, the Hard-Core model has gained relevance in the study of communication networks (see,
e.g., [10]).

The Hard-Core model has been extensively studied on various types of lattices and graphs due
to its broad applications in statistical physics, combinatorics, and operations research. The choice of
lattice often depends on the specific phenomena being investigated and the mathematical properties of
interest. Commonly studied lattices include: Cayley trees (Bethe lattices) [3, 4, 8, 11, 12, 14, 16, 18],
triangular and hexagonal lattices [1, 7], d-dimensional hypercubic lattices [15, 17], random graphs [10],
weighted and bipartite lattices [19]. Each of these lattices provides unique insights into the behavior of
the Hard-Core model, ranging from exact solvability on trees to the complexity of dense configurations
in higher-dimensional or irregular structures.

In 1979 Jelitto [9] introduced the zero-field Ising model on the closed Cayley tree of branching ratio
two and proceeded to solve it exactly. After that a great interest has been devoted to the investigation
of various properties of the Ising model (see, e.g., [2, 13, 20]), Potts model (see, e.g., [5, 6]) on the
closed Cayley trees.

In the present paper, we consider the two-state Hard-Core model on the closed Cayley tree of
branching ratio two. On the symmetric case, we exactly solve the model, i.e., we find the critical value
of the parameter such that below this value there are three limiting Gibbs measures. On the other
hand, as in [18] it is shown that the model on the Cayley tree of order two possesses a unique limiting
Gibbs measure for all values of the parameter.

The paper is organized as follows. Section 2 focuses on the preliminary concepts and foundational
material. In Section 3, we derive a functional equation for the model by leveraging the structure of
the graph. In Section 4, we review several results concerning the open Cayley tree. Section 5 focuses
on the analysis of limiting Gibbs measures for the model on the symmetric tree.

2. Preliminaries

An open tree is a graph G = {E,K} that is connected and contains no circuits. Thus, G is an open
tree if and only if, for any two distinct vertices x, y ∈ E, there exists a unique path x = z1, z2, . . . , zm =
y, where z1, . . . , zm are distinct.

A symmetric closed Cayley tree can be constructed recursively as follows (see Fig. 1). At the
initial, or first stage, two nodes are connected by a vertical edge, as shown in Fig. 1a. To construct
the next stage, each vertical edge in the previous stage is replaced by the elemental cluster illustrated
in Fig. 1b. Consequently, Fig. 1b represents the second stage, Fig. 1c depicts the third stage, and
this process continues iteratively.
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Figure 1. The recursive construction of the closed tree.

To define a random field on an infinite closed tree, it is useful to consider its construction from a
different perspective. We begin with a single vertical edge connecting a pair of sites. Next, replicate
this structure to the right and connect the two top sites through an additional site with two edges.
Similarly, connect the two bottom sites in the same manner, thereby forming the elemental hexagon
shown in Fig. 1b.

In the next step, replicate this structure to the right and link the two top sites and two bottom
sites as before. This process generates a closed tree with two upper levels and two lower levels, as
illustrated in Fig. 1c. Denote the finite closed tree constructed at the nth stage by T (n). The infinite
closed Cayley tree is then defined as

T = lim
n→∞

T (n).

The infinite closed Cayley tree T can be naturally decomposed into two distinct parts:

T = Γ1 ∪ Γ2 ∪ S,

where S is the set of edges which connects upper and lower tree, Γ1 = {V1, L1} represents the upper
tree, and Γ2 = {V2, L2} represents the lower tree.

We consider binary random fields on T that can be regarded as the limiting measure of a spin
system on a sequence of finite closed Cayley trees. Let V = V1 ∪ V2 and L = L1 ∪ L2. If l ∈ L an
edge with endpoints x, y ∈ V then we write l = 〈x, y〉 and the endpoints are called nearest neighbors.
We assume that Φ = {0, 1}, and σ ∈ Ω = ΦV is a configuration, i.e., σ = {σ(x) ∈ Φ : x ∈ V }, where
σ(x) = 1 means that the vertex x on the closed tree T (n) = {V (n), L(n)} is occupied, and σ(x) = 0
means it is vacant. A configuration σ on the upper (respectively, lower) tree is said to be admissible
if σ(x)σ(y) = 0 for every edge 〈x, y〉 in L1 (respectively, L2). If the configuration σ is admissible on
both the upper and lower trees, then it is called admissible on V and the set of such configurations is
denoted by Ωa. Clearly, Ωa ⊂ ΦV . Furthermore, at the first stage, the condition σ(x)σ(y) = 1 may
occur. In such a case, the edge 〈x, y〉 is referred to as an occupied edge.

We represent the random field on T (n) in terms of the potential function

H(σ) = −J0

∑
〈x,y〉:x∈V1,y∈V2

σ(x)σ(y)− J1

∑
i∈V1

σ(i)− J2

∑
j∈V2

σ(j), (2.1)

the first summation is carried out over all spins on the surfaces sites (i.e., those for nearest neighbor
pairs on upper level 1 and lower level 1), the second (third) summation is taken over the vertices of
the upper (lower) tree of T (n) (see Fig. 1).
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Figure 2. Closed tree model with J0 =∞.

Let B be the σ-algebra generated by cylindrical sets with finite base of Ωa. For any n we let
BV (n) = {ω ∈ Ωa : ω|V (n) = ωn} denote the subalgebra of B, where ω|V (n) is restriction of ω to V (n)

and ωn : x ∈ V (n) 7→ ωn(x) an admissible configuration in V (n).
The resulting for σ ∈ BV (n) Gibbs distribution is defined by

P (σ) =
1

Z(n)
exp

(
− 1

kT
H(σ)

)
,

where

Z(n) =
∑
σ

exp

(
− 1

kT
H(σ)

)
,

is the partition function. We can rewrite this distribution in terms of the number of “occupied“ edges
n0(ω) and number of “occupied“ vertices n1(ω) and n2(ω) on the surface, the upper tree and the lower
tree, respectively, as follows:

P (ω) =
1

Z(n)
exp{h0n0(ω) + h1n1(ω) + h2n2(ω)}, (2.2)

where hi = Ji
kT
, i = 0, 1, 2.

Notice that several special cases of interest can be obtained from the above system as follows:

(a) To recover the system on the open tree, we set J0 = 0. The resulting system is equivalent to
two independent hard-core models on open trees.

(b) If J0 6= 0 and J1 = J2, we obtain the closed symmetric model.

(c) If we set J1 = J2 and J0 = ∞, we obtain a spin system on the closed tree (as shown in Fig.
2) in which the upper and lower surface levels (i.e., levels 0) have been fused.

3. Recurrence relations

To study the phase transition, we propose an approach using a recurrence relation for the partition
function and subsequently derive some new properties.

The partition function Z(n) can be expressed as the sum of four terms:

Z(n) = Z
(n)
0,0 + Z

(n)
0,1 + Z

(n)
1,0 + Z

(n)
1,1 , (3.1)

where
Z

(n)
α,β =

∑
{ω:ωu=α,ωl=β}

exp {h0n0(ω) + h1n1(ω) + h2n2(ω)} ,

with α and β taking values 0 or 1, and ωu and ωl representing the spins at the uppermost and lowermost

sites of Γi, i = 1, 2, respectively. Each term Z
(n)
α,β can further be decomposed as a combination of

different Z
(n−1)
α,β . As shown in Figure 3, there are 16 distinct possibilities for each pair (α, β).



The phase transition for the Hard-Core model 129

Figure 3. There are 10 fundamental configurations out of the 16 possible configurations with top spin 0 and

bottom spin 1. The remaining 6 configurations can be obtained by exchanging the left and right subtrees in

equation (3.2).

Figure 4. The four fundamental possible configurations for eq.(3.3) and eq.(3.4)

Figure 5. The fundamental possible configurations for eq.(3.5)

Then

Z
(n)
0,0 =

(
Z

(n−1)
0,0

)2

+
(
Z

(n−1)
0,1

)2

+
(
Z

(n−1)
1,0

)2

+
(
Z

(n−1)
1,1

)2

+

+ 2Z
(n−1)
0,0 Z

(n−1)
0,1 + 2Z

(n−1)
0,0 Z

(n−1)
1,0 + 2Z

(n−1)
0,0 Z

(n−1)
1,1 +

+ 2Z
(n−1)
0,1 Z

(n−1)
1,0 + 2Z

(n−1)
0,1 Z

(n−1)
1,1 + 2Z

(n−1)
1,0 Z

(n−1)
1,1 =

=
(
Z

(n−1)
0,0 + Z

(n−1)
0,1 + Z

(n−1)
1,0 + Z

(n−1)
1,1

)2

. (3.2)

Similarly (see Fig. 4 and Fig. 5),

Z
(n)
0,1 = eh2

(
Z

(n−1)
0,0 + Z

(n−1)
1,0

)2

, (3.3)



130 Makhammadaliev M., Karshiboev O.

Z
(n)
1,0 = eh1

(
Z

(n−1)
0,0 + Z

(n−1)
0,1

)2

, (3.4)

and

Z
(n)
1,1 = eh1+h2

(
Z

(n−1)
0,0

)2

. (3.5)

The initial values are given by (see Fig. 6)

Z
(0)
0,0 = 1, Z

(0)
0,1 = eh2 , Z

(0)
1,0 = eh1 , Z

(0)
1,1 = eh0+h1+h2 .

Figure 6. The initial configurations.

Therefore,

Z
(1)
0,0 =

(
1 + eh2 + eh1 + eh0+h1+h2

)2
, Z

(1)
1,1 = eh1+h2 , Z

(1)
0,1 = eh2

(
1 + eh1

)2
, Z

(1)
1,0 = eh1

(
1 + eh2

)2
.

Let

xn =
Z

(n)
0,1

Z
(n)
1,0

, yn =
Z

(n)
0,0

Z
(n)
1,0

, zn =
Z

(n)
1,1

Z
(n)
1,0

, (3.6)

and
a = eh0 , b = eh1 , c = eh2 . (3.7)

Then 
xn = c(yn−1+1)2

b(xn−1+yn−1)2 ,

yn = (xn−1+yn−1+zn−1+1)2

b(xn−1+yn−1)2 ,

zn =
cy2
n−1

(xn−1+yn−1)2 .

(3.8)

If limn→∞ xn = x, limn→∞ yn = y and limn→∞ zn = z exist, then
x = c(1+y)2

b(x+y)2 ,

y = (x+y+z+1)2

b(x+y)2 ,

z = cy2

(x+y)2 .

(3.9)

If the system of equations (3.9) has a unique solution, the corresponding limiting measure is also
unique, indicating the absence of a phase transition. On the other hand, if the system has multiple
solutions, this implies there is more than one (actually, infinitely many) limiting measures, which is
characteristic of a phase transition.

4. Review some known results

When J0 = 0, i.e., a = 1, the model is reduced to two identical and independent open tree models
each of which may be represented by

P (ω) =
1

z(n)
exp{h1n1(ω)}, (4.1)

where h1 = J1

kT
. The partition function

z(n) =
∑
σ

exp

(
− 1

kT
H(σ)

)
,
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where
H(σ) = −J1

∑
x∈V1

σ(x),

can be divided into two parts,

z(n) = z
(n)
0 + z

(n)
1 , (4.2)

where

z
(n)
0 =

(
z

(n−1)
0 + z

(n−1)
1

)2

, z
(n)
1 = eh

(
z

(n−1)
0

)2

.

The quantities in (3.2)-(3.5) can be expressed as the products of z
(n)
0 and z

(n)
1 as follows:

Z
(n)
0,1 = Z

(n)
1,0 = z

(n)
0 · z(n)

1 , Z
(n)
0,0 =

(
z

(n)
0

)2

, Z
(n)
1,1 =

(
z

(n)
1

)2

. (4.3)

By defining

un =
z

(n)
1

z
(n)
0

,

we reduce the system of equations (4.3) to a single equation

un =
λ

(1 + un−1)
2 := φ(un−1),

where λ = eh and φ(x) = λ
(1+x)2 . If un has a limit, say u, we must have u = φ(u).

Remark 4.1. Yu. Suhov and U. Rozikov studied the equation u = φ(u) in [18] and it is shown that
it has unique positive solution, which implies that the model on the open Cayley tree of order two
does not exhibit a phase transition.

5. Main results

For J0 6= 0, we obtain a Hard-Core model on the closed tree shown in Figure 1. We consider only
the symmetric case, i.e., J1 = J2 = J (thus, h1 = h2 = h and b = c). Since h = 0 corresponds to a
trivial i.i.d. model, we always assume that h 6= 0, i.e., b 6= 1.

In the symmetric case b = c under consideration, the system (3.9) becomes
x = (1+y)2

(x+y)2 ,

y = (x+y+z+1)2

c(x+y)2 ,

z = cy2

(x+y)2 .

(5.1)

Denote ccr = 22
√

33
9

+ 14 ≈ 28.0422. The following is true

Proposition 5.1. The system of equations (5.1) has:

• three solutions when c > ccr;

• two solutions when c = ccr;

• one solution when 0 < c < ccr.

Proof. For simplicity, we define u =
√
x, v =

√
y, t =

√
z and γ =

√
c. Then (5.1) is reduced to

u = 1+v2

u2+v2 ,

v = u2+v2+t2+1
γ(u2+v2)

,

t = γv2

u2+v2 .

(5.2)
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From the first equation of (5.2) we get

(u− 1)(u2 + u+ 1 + v2) = 0.

Therefore, u = 1. Then from the third equation, we obtain

t =
γv2

1 + v2
.

Setting it to the second equation of (5.2), we have(
γv3 − v2 − 1

)(
v4 + 3v2 − γv + 2

)
= 0. (5.3)

We consider the first factor of equation (5.3). Using the Cardano formula, we obtain that equation

γv3 − v2 − 1 = 0

has one positive solution of the form

v0 =
ρ2(γ) + 2ρ(γ) + 4

6γρ(γ)
,

where

ρ(γ) =
3

√
108γ2 + 12γ

√
81γ2 + 12 + 8.

Now we consider the second factor of equation (5.3). Using the Ferrari formula, we find the solutions
of the equation

v4 + 3v2 − γv + 2 = 0.

After some operations, we get

v4 + 3v2 − γv + 2 =

(
v2 +

3

2
+ c0

)2

−
(

2c0v
2 + γv + c2

0 + 3c0 +
1

4

)
.

Denote

c0(γ) =
β2(γ)− 12β(γ) + 132

12β(γ)
,

where

β(γ) =
3

√
108γ2 + 12

√
81γ4 − 2268γ2 − 96− 1512

and γ ≥ γcr =

√
22
√

33+126

3
≈ 5.295494. After some operations, one gets

v4 + 3v2 − γv + 2 =

=

(
v2 +

√
2c0v +

3

2
+ c0 +

γ

2
√

2c0

)
·
(
v2 −

√
2c0v +

3

2
+ c0 −

γ

2
√

2c0

)
= 0.

Due to the Vieta formulas, the first factor does not have a positive solution for any γ > 0. The second
factor has one positive solution if γ = γcr and two positive solutions if γ > γcr. Therefore, the system
of equations (5.1) has three solutions when c > ccr, has two solutions when c = ccr and has one
solution when 0 < c < ccr. �

Summarising, we obtain

Theorem 5.2. For the Hard-Core model on the symmetric closed Cayley tree with a branching ratio
of two:

• if h ≥ ln
(

22
√

33
9

+ 14
)

, a phase transition occurs,

• if h < ln
(

22
√

33
9

+ 14
)

, a phase transition does not occur.
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Abstract. The mathematical model of the control system considered in this paper is presented
in the form of a linear nonstationary differential inclusion. For this model of the control system,
the problem of locally relative controllability is studied. The necessary conditions of locally relative
M−controllability for compact terminal set M are obtained. Property of locally relative controllability
of differential inclusion has been studied using the methods of convex analysis, properties of multi-
valued maps, support functions and the fundamental matrix for solving linear systems of differential
equations.
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1. Introduction

Differential inclusions have wide applications in the theory of optimal control, in differential games,
in the theory of differential equations with discontinuous right-hand sides and in other fields. Differ-
ential inclusions are a convenient mathematical apparatus in the research of such fundamental issues
of the mathematical theory of optimal control as the problems of controllability of dynamic systems,
the existence of optimal control, necessary and sufficient optimality conditions [1]-[5]. By now, the
scope of research of differential inclusion and applications has significantly expanded.

One of the most important problems for a dynamic system is its controllability property. Along
with full controllability, the problems of conditional, relative and local controllability are also of great
interest in control theory. The necessary and sufficient conditions of controllability have been studied
for various classes of models of dynamic systems [6]-[18]. Many results on controllability problem
obtained for ordinary continuous systems are developed for systems with delays and discrete systems
[19]-[21].

The issues of controllability of dynamical systems can be studied as controllability problems for
models described by various classes of differential inclusions. Some properties of the type of local con-
trollability for systems described by differential inclusions were initially studied by V.I.Blagodatskikh
[3],[22]. The property of controllability of differential inclusions are also investigated by F. Clark[2],
B. Sh. Mordukhovich [23], E. S. Polovinkin and G. V. Smirnov [24], H. Frankowska [25].

At the present stage of development of the theory of optimal processes, much attention is devote to
the issues of building optimal control systems in conditions of inaccuracy and insufficient information.
Therefore, the issues of controllability of the ensemble of trajectories of differential inclusions with
control parameters are of particular interest. The works [26]-[28] are devoted to the study of the
controllability property of an ensemble of trajectories. Some properties of the set of relative control-
lability of the differential inclusion were studied in [29],[30]. In this paper for one model of a control
system in the form of a differential inclusion the problem of necessary conditions of locally relative
controllability is studied.

2. Statement of the problem

We will use the designations: Rn is n - dimensional Euclidean space;(x, y) is the inner product of
vectors x, y ∈ Rn; ||x|| is the norm of the vector x ∈ Rn; c(X,ψ) = sup{(x, ψ) : x ∈ X} is the support
function of a limited set X from Rn; ||X|| = sup

x∈X
||x|| is the norm of compact set X; L1(T ) is the space

of Lebesgue integrable (summable) functions defined on the segment T = [t0, t1].
Consider a control object whose dynamics in the n dimensional state space Rn is described by

differential inclusion
dx

dt
∈ A(t)x+B(t), t ≥ t0 (2.1)
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where A(t) is a n × n-matrix, B(t) is a multi-valued mapping. We will assume that the following
conditions are met:

1) the elements of the matrix A(t) are summable on any T = [t0, t1] ⊂ [t0,+∞); 2) for each t ≥ t0 a
set B(t) ⊂ Rn is compact and multivalued mapping t → B(t) is measurable on an arbitrary segment
T ⊂ [t0,+∞) and ||B(t)|| ≤ β(t),where β(·) ∈ L1(T ) .

By the admissible trajectories of the control system we will understand each absolutely continuous
n-vector function x = x(t) on a certain segment T = [t0, t1], satisfying almost everywhere on T = [t0, t1]
a given differential inclusion (2.1).

Let X(t0, t1, x0, A,B) be the reachability set of differential inclusion (2.1) from the starting point
x0 ∈ Rn at time t1 > t0, i.e. the set of all possible points x1 ∈ Rn for which there are trajectories
x = x(t), t ∈ T = [t0, t1], such that x(t0) = x0 and x(t1) = x1 .

Let M be a given compact set of the space Rn which will use as set of terminal states of the control
object (2.1); M ε = {ξ : ξ = m+ ν,m ∈M, ||ν|| ≤ ε} is the ε- neighborhood of the set M .

Definition 2.1. We will say that a differential inclusion (2.1)locally relative M - controllable if there
is a number ε > 0 and a time interval T = [t0, t1], such that for any starting point x0 ∈ M ε

there exist an admissible trajectory x(t), t ∈ T , satisfying the condition x(t1) ∈ M , i.e. the rela-
tion X(t0, t1, x0, A,B) ∩M 6= ∅ ∀x0 ∈M ε holds.

In the case when the set M consists of a single element, i.e. if M = {m}, then according to this
definition we will say about the local {m}-contractility of the differential inclusion.And in the case of
m = 0, according to the definition, we obtain a definition of the local zero-contractility of the system
under consideration.

From the theory of multivalued maps and differential inclusions and [1], [3] and linear systems of dif-
ferential equations is known that for the set X(t0, t1, ξ, A,B) the following formula is true [14],[18],[26]

X(t0, t1, ξ, A,B) = ΦA(t1, t0)ξ +

t1∫
t0

ΦA(t1, t)B(t)dt, (2.2)

where ΦA(t, τ) is the fundamental matrix of solutions to equation
dx

dt
= A(t)x, t ∈ T . From this

formula and the properties of the integral of multivalued maps, it easily follows that X(t0, t1, ξ, A,B)
is a convex compact of space Rn. According to results of the theory of multivalued mappings and the
properties of support functions [3], from the formula (2.2) follows that for the support function of the
set X(t0, t1, ξ, A,B) the formula holds

c(X(t0, t1, ξ, A,B), ψ) = (ΦA(t1, t0)ξ, ψ) +

t1∫
t0

c(ΦA(t1, t)B(t), ψ)dt. (2.3)

Using the methods of convex analysis, the properties of multivalued maps and support functions, and
the fundamental matrix for solving linear systems of differential equations [3]-[6] we will study the
property of locally relative controllability of differential inclusion (2.1).

3. Necessary conditions for locally relative M-controllability

Theorem 3.1. For locally relative M -controllability of differential inclusion (2.1), it is necessary
that the condition

inf
||ψ||=1

sup
ξ∈M

t1∫
t0

c(ΦA(t1, τ)[A(τ)ξ +B(τ)], ψ)dτ > 0, (3.1)

was performed at some moment of time t1 > t0 .
Proof. Suppose by contradiction, i.e. let for each t1 > t0,there exists ψ0 = ψ0(t1) ∈ Rn, ||ψ0|| = 1

such that there is an inequality

sup
ξ∈M

t1∫
t0

c(ΦA(t1, τ)[A(τ)ξ +B(τ)], ψ0)dτ ≤ 0. (3.2)
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Since the differential inclusion (2.1) is locally relative M - controllable, then by virtue of definition 2.1,
there exists a number ε > 0 and some moment of time t1 > t0 such that for all x0 ∈ M ε there is a
ratio X(t0, t1, x0, A,B)∩M 6= ∅, which is equivalent to inclusion 0 ∈ X(t0, t1, x0, A,B)−M. Using of
the support functions, the last relation can be written as an inequality

inf
||ψ||=1

[c(X(t0, t1, x0, A,B), ψ) + c(M,−ψ)] ≥ 0.

Using the formula (2.3), the resulting inequality can be written as follows:

inf
||ψ||=1

[(ΦA(t1, t0)x0, ψ) +

t1∫
t0

c(ΦA(t1, τ)B(τ), ψ)dτ + c(M,−ψ)] ≥ 0.

Hence, in particular, we obtain that for the vector ψ0 = ψ0(t1) ∈ Rn, ||ψ0|| = 1 satisfying the inequality
(3.2), the following inequality is also valid:

(ΦA(t1, t0)x0, ψ
0) +

t1∫
t0

c(ΦA(t1, τ)B(τ), ψ0)dτ + c(M,−ψ0) ≥ 0. (3.3)

Due to the compactness of the setM , there exists a pointm0 ∈M such that (m0,−ψ0) = c(M,−ψ0),
i.e.

(m0, ψ0) + c(M,−ψ0) = 0. (3.4)

Consider an arbitrary point ξ = m0 + ν, ||ν|| ≤ ε. By virtue of the properties of the fundamental
matrix ΦA(t1, t), we have:

ΦA(t1, t0)m0 −m0 = −
t1∫
t0

∂ΦA(t1, t)

∂t
m0dt =

t1∫
t0

ΦA(t1, t)A(t)m0dt.

Therefore,

(ΦA(t1, t0)ξ, ψ0) = (m0, ψ0) +

t1∫
t0

(ΦA(t1, t)A(t)m0, ψ0)dt+ (ΦA(t1, t0)ν, ψ0).

Thus, given (3.4), we have:

(ΦA(t1, t0)ξ, ψ0) +

t1∫
t0

c(ΦA(t1, τ)B(τ), ψ0)dτ + c(M,−ψ0) = (ΦA(t1, t0)ν, ψ0)+

+(m0, ψ0) + c(M,−ψ0) +

t1∫
t0

(ΦA(t1, τ)A(τ)m0, ψ0)dτ +

t1∫
t0

c(ΦA(t1, τ)B(τ), ψ0)dτ =

= (ΦA(t1, t0)ν, ψ0) +

t1∫
t0

c(ΦA(t1, τ)[A(τ)m0 +B(τ)], ψ0)dτ. (3.5)

Consider the vector ν0 = − εΦ
′
A(t1,t0)ψ0

||Φ′A(t1,t0)ψ0|| . It is clear that ||ν0|| = ε . Therefore, assuming ν = ν0, for

the vector ξ ≡ x0 = m0 + v0 from (3.5) we get:

(ΦA(t1, t0)x0, ψ
0) +

t1∫
t0

c(ΦA(t1, τ)B(τ), ψ0)dτ + c(M,−ψ0) =
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= −ε||Φ
′

A(t1, t0)ψ0||+
t1∫
t0

c(ΦA(t1, τ)[A(τ)m0 +B(τ)], ψ0)dτ. (3.6)

Now, considering (3.2), from (3.6) we obtain

(ΦA(t1, t0)x0, ψ
0) +

t1∫
t0

c(ΦA(t1, τ)B(τ), ψ0)dτ + c(M,−ψ0) < 0.

The latter inequality contradicts condition (3.3), the validity of which, as already stated above,
follows from the local-relative M - controllability of the differential inclusion (2.1). The resulting
contradiction proves the theorem.

Theorem 3.2. If the differential inclusion (2.1) is locally-relative M - controllable, then there exists
a moment of time t1 > t0 such that following inclusion takes place:

0 ∈ int
t1∫
t0

ΦA(t1, τ)
[
A(τ)M +B(τ)

]
dτ. (3.7)

Proof. Using the properties of the support functions the necessary condition of local controllability
in form (3.1) can be written as an inequality

inf
||ψ||=1

c(
⋃
ξ∈M

t1∫
t0

ΦA(t1, τ)[A(τ)ξ +B(τ)]dτ, ψ) > 0. (3.8)

It is clear that

c(
⋃
ξ∈M

t1∫
t0

ΦA(t1, τ)[A(τ)ξ +B(τ)]dτ, ψ) ≤ c(
t1∫
t0

ΦA(t1, τ)[A(τ)M +B(τ)]dτ, ψ).

So, from the necessary condition of locally relative M -controllability in from (3.8), we obtain

inf
||ψ||=1

c(

t1∫
t0

ΦA(t1, τ)[A(τ)M +B(τ)]dτ, ψ) > 0.

Due to the properties of the support functions, the relation (3.8) follows from the last inequality.
Theorem 2.1 is proven.

Corollary 3.1. If differential inclusion (2.1) is locally relative M - controllable, then there exists a
moment of time t1 > t0 such that

0 ∈ int[X(t0, t1, coM,A,B)− coM ]. (3.9)

Indeed, for an arbitrary point m ∈M we have:

t1∫
t0

ΦA(t1, τ)
[
A(τ)m+B(τ)

]
dτ =

t1∫
t0

ΦA(t1, τ)A(τ)mdτ +

t1∫
t0

ΦA(t1, τ)B(τ)dτ =

= −
t1∫
t0

∂ΦA(t1, τ)

∂τ
dτm+

t1∫
t0

ΦA(t1, τ)B(τ)dτ = (ΦA(t1, t0)− E)m+

t1∫
t0

ΦA(t1, τ)B(τ)dτ.

Therefore,
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⋃
m∈M

t1∫
t0

ΦA(t1, τ)[A(τ)m+B(τ)]dτ =
⋃
m∈M

[
(ΦA(t1, t0)− E)m+

t1∫
t0

ΦA(t1, τ)B(τ)dτ
]

=

=
⋃
m∈M

[
(ΦA(t1, t0)− E)m

]
+

t1∫
t0

ΦA(t1, τ)B(τ)dτ = (ΦA(t1, t0)− E)M +

t1∫
t0

ΦA(t1, τ)B(τ)dτ,

where E is a single n×n - matrix. Since the condition (3.1) is equivalent to the ratio (3.8), we obtain
that the necessary condition (3.1) takes the form of inclusion

0 ∈ int
[
(ΦA(t1, t0)− E)coM +

t1∫
t0

ΦA(t1, τ)B(τ)dτ
]
.

Therefore, using formula (2.2), we obtain a formula (3.9).
Remark 3.1. From the condition (3.9) follows that if the differential inclusion (2.1) is locally

{m}-controllable, then
m ∈ intX(t0, t1,m,A,B)

for some moment of time t1 > t0.
Corollary 3.2. If the differential inclusion (2.1) is locally relative M - controllable, then there exists

a moment of time t1 > t0 such that there is an inequality

inf
||ψ||=1

sup
t∈[t0,t1]

c
(
ΦA(t1, t)[A(t)M +B(t)], ψ

)
> 0. (3.10)

Indeed, if we assume that (3.10) does not hold for any t1 > t0, then for each moment of time t1 > t0
there exists ψ∗ = ψ∗(t1) ∈ Rn, ||ψ∗|| = 1 such that

sup
t∈[t0,t1]

c
(
ΦA(t1, t)[A(t)M +B(t)], ψ∗

)
≤ 0.

Then, from this inequality we get

c
( t1∫
t0

ΦA(t1, τ)[A(τ)M +B(τ)]dτ, ψ∗
)

=

t1∫
t0

c(ΦA(t1, τ)[A(τ)M +B(τ)], ψ∗)dτ ≤ 0.

But this contradicts to the necessary condition of locally relative M -controllability in the form (3.7).
Theorem 3.3. If the differential inclusion (2.1) is locally-relative M - controllable, then there exists

a moment of time t1 > t0 such that

0 ∈ int co
⋃

t∈[t0,t1]

ΦA(t1, t)[A(t)M +B(t)].

Proof. According to corollary 3.2, there exist of a moment of time t1 > t0 and the condition (3.10)
is fulfilled. The left part of (3.10) is denoted by δ > 0. Then it is clear that

δ ≤ sup
t∈[t0,t1]

c
(
ΦA(t1, t)[A(t)M +B(t)], ψ

)
=

= c
( ⋃
t∈[t0,t1]

ΦA(t1, t)[A(t)M +B(t)], ψ
)
∀ψ ∈ Rn, ||ψ|| = 1.

Therefore, according to the properties of the support functions, we have

0 ∈ int co
⋃

t∈[t0,t1]

ΦA(t1, t)[A(t)M +B(t)].
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Theorem 3.3 is proven.
Theorem 3.4. Let B(t) = C(t)U(t), where C(t) = (cij(t)) is a n × m -matrix whose elements

cij(t) ∈ L1(T ) at each T = [t0, t1], t → U(t) is a measurable multivalued map, U(t) is compact set
from Rm, ||U(t)|| ≤ g(t), t ∈ T = [t0, t1], g(·) ∈ L1(T ). Then if the system (2.1) is locally zero-
controllable, then there exists t1 > t0 such that for any ψ ∈ Rn, ||ψ|| = 1 the relation µΘ(ψ) > 0 is
valid, where µΘ(ψ) is the Lebesgue measure of the set Θ(ψ) = {t ∈ T = [t0, t1] : C

′
(t)Φ

′

A(t1, t)ψ 6= 0}.
Proof. Suppose contrary, i.e. for any t1 > t0 there exists ψ∗ = ψ(t1) ∈ Rn, ||ψ∗|| = 1 such that

µ{t ∈ [t0, t1] : C
′
(t)Φ

′

A(t1, t)ψ
∗ 6= 0} = 0. Then we have:

t1∫
t0

c
(
ΦA(t1, t)C(t)U(t), ψ∗

)
dt =

t1∫
t0

c
(
U(t), C ′(t)Φ

′

A(t1, t)ψ
∗)dt =

=
∫

µΘ(ψ∗)

c
(
U(t), C ′(t)Φ

′

A(t1, t)ψ
∗)dt = 0.

But, on the other hand, since the zero-controllability property takes place, then by virtue of Theorem
3.1 the ratio is valid.

t1∫
t0

c
(
ΦA(t1, t)C(t)U(t), ψ∗

)
dt =

t1∫
t0

c
(
U(t), C ′(t)Φ

′

A(t1, t)ψ
∗)dt > 0,

which contradicts the equality obtained above. This contradiction shows that our assumption is
incorrect, and therefore, the theorem has been proved.

Corollary 3.3. Let A(t) ≡ A,B(t) ≡ CU(t), where C is a n×m- matrix, t→ U(t) is a measurable
multivalued map, U(t) is compact set of space Rm, ||U(t)|| ≤ g(t), t ∈ T = [t0, t1], g(·) ∈ L1(T ). Then,
if the system (2.1) is locally zero-controllable, then rankK = n, where K = {C,AC,A2C, ..., An−1C}.

In fact, if we assume that rankK < n, then there exists ψ ∈ Rn, ||ψ|| = 1 such that

ψ
′
C = ψ

′
AC = ψ

′
A2C = ... = ψ

′
An−1C = 0.

According to the Cayley-Hamilton theorem from algebra, a square matrix A of size n satisfies the
equality

An + α1A
n−1 + α2A

n−2 + ...+ αn−1A+ αnE = 0,

where α1, α2, ..., αn are the coefficients of the characteristic equation det(A−λE) = 0. It follows that all
degrees Aν , ν ≥ n of the matrix A are expressed as linear combinations of matrices E,A,A2, ..., An−1.
Therefore, using the definition of an exponential matrix, we have:

etA = E + tA+
t2

2!
A2 + ...+

tn−1

(n− 1)!
An−1 +

tn

n!
An + ... =

= β1(t)E + β2(t)A+ ...+ βn(t)An−1,

where β1, β2, ..., βn are the analytical functions of the argument t. Therefore, given that ΦA(t1, t) =
eA(t1−t) , we have:

ψ
′
ΦA(t1, t)C = ψ

′
eA(t1−t)C = ψ

′
[β1(t)E + β2(t)A+ ...+ βn(t)An−1]C =

= β1(t)ψ
′
C + β2(t)ψ

′
AC + ...+ βn(t)ψ

′
An−1C = 0, ∀t ∈ [t0, t1].

Thus, ψ
′
ΦA(t1, t)C = 0 ∀t ∈ [t0, t1]. And this contradicts the necessary condition of local zero-

controllability µ{t ∈ T = [t0, t1] : C
′
(t)Φ

′

A(t1, t)ψ 6= 0} > 0 from Theorem 3.4. The resulting contra-
diction proves the statement of the corollary.

Remark 3.2. The fulfillment of the inclusion 0 ∈ int co
⋃

t∈[t0,t1]

ΦA(t1, t)B(t) for a certain t1 > t0

is necessary condition of zero-controllability. A necessary condition for local M -controllability with
there will be condition 0 ∈ int co

⋃
t∈[t0,t1]

B(t), t1 > t0. If A(t) ≡ 0 and B(t) ≡ B, then the condition

0 ∈ int coB is a necessary condition for the local M -controllability of the system (2.1).
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4. Conclusion

The paper researches the problem of local relative controllability for a mathematical model of a
control system in the form of a linear nonstationary differential inclusion. Assuming that the terminal
set M is compact, the necessary conditions for locally-relative M - controllability are studied. From
these conditions, the consequences are derived, which clarify and supplement the results obtained.
These results, in particular, are of interest for the question concerning the conditions of openness of
the field of zero-controllability of a dynamical system.
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Abstract. Fractional-order stochastic gradient descent (FOSGD) leverages fractional exponents
to capture long-memory effects in optimization. However, its utility is often limited by the difficulty
of tuning and stabilizing these exponents. We propose 2SED Fractional-Order Stochastic Gradient
Descent (2SEDFOSGD), which integrates the Two-Scale Effective Dimension (2SED) algorithm with
FOSGD to adapt the fractional exponent in a data-driven manner. By tracking model sensitivity and
effective dimensionality, 2SEDFOSGD dynamically modulates the exponent to mitigate oscillations
and hasten convergence. Theoretically, this approach preserves the advantages of fractional memory
without the sluggish or unstable behavior observed in näıve fractional SGD. Empirical evaluations in
Gaussian and α-stable noise scenarios using an autoregressive (AR) model, highlight faster convergence
and more robust parameter estimates compared to baseline methods, underscoring the potential of
dimension-aware fractional techniques for advanced modeling and estimation tasks.
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1. Introduction

Machine learning (ML) and scientific computing increasingly rely on sophisticated optimization
methods to tackle complex, high-dimensional problems. Classical stochastic gradient descent (SGD)
has become a mainstay in training neural networks and large-scale models, owing to its simplicity
and practical performance. However, standard SGD exhibits notable limitations: it typically treats
updates as short-term corrections, discarding a rich history of past gradients. In contrast, fractional
approaches in optimization draw upon the theory of fractional calculus to capture long-memory effects,
thereby influencing the trajectory of updates by retaining historical gradient information over extended
intervals [2, 3].

We assume the parameter space Θ ⊆ Rd represents the parameters of a neural network with L
layers, where each layer j has parameters θ(j) ∈ Rdj , and d =

∑L
j=1 dj. The Fisher Information Matrix

and 2SED measures are computed for each layer to adapt optimization updates.
Fractional calculus extends traditional calculus to include non-integer orders, offering a powerful

tool for modeling and control in various fields, including optimization. It allows for the incorpora-
tion of memory and hereditary properties into models, which is particularly beneficial in dynamic
systems and optimization, e.g. [4]. By leveraging fractional derivatives, optimization algorithms can
potentially achieve better convergence properties and robustness against noise, as they account for the
accumulated effect of past gradients rather than relying solely on the most recent updates [6]. This
approach has shown promise in enhancing the performance of optimization algorithms in machine
learning and other scientific computing applications [14].

By embracing these generalized derivatives, FOSGD modifies the usual gradient step to incorpo-
rate a partial summation of past gradients, effectively smoothing updates over a historical window.
The method stands especially valuable for scenarios where prior states wield significant impact on
the current gradient, as often encountered in dynamic processes or highly non-convex landscape [8].
Nonetheless, the quest for harnessing fractional updates is not without drawbacks. Incorporating frac-
tional operators demands added hyperparameters (particularly the fractional exponent α), which can
prove sensitive or unstable to tune. Excessively low or high fractional orders may slow convergence
or lead to oscillatory gradients, thus negating the presumed benefits. Bridging the gap between the
theoretical elegance of fractional calculus and the pressing computational demands of real-world ML
systems remains a formidable challenge.
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Although FOSGD helps mitigate short-term memory loss by preserving traces of past gradients,
selecting and calibrating the fractional exponents can introduce substantial complexities in real-world
settings. For instance, deciding whether α = 0.5 or α = 0.9 is most appropriate for capturing relevant
memory structures is neither straightforward nor reliably robust, with the optimal choice often varying
considerably across tasks or even across different stages of training. In practice, if the chosen exponent
fails to align with the true dynamics of the loss landscape, updates may drift or stall, resulting in
unpredictable or sluggish convergence. Moreover, fractional terms can amplify variance in gradient
estimatesespecially under noisy or non-stationary conditions thereby causing oscillatory or chaotic
training behaviors that undermine stability.

Beyond these convergence and stability concerns, fractional exponents impose additional burdens
on tuning and hyperparameter selection. Even minor changes in α can radically alter the memory
effect, forcing practitioners to engage in extensive trial-and-error experiments to achieve consistent
results. Such overhead becomes especially prohibitive in large-scale or time-sensitive applications,
where iterating over a range of fractional parameters is not feasible. Consequently, despite its theo-
retical promise as a memory-based learning strategy, FOSGD faces limited adoption in practice, as
the algorithm’s strong reliance on well-chosen exponents can undercut the potential advantages that
long-range gradient retention might otherwise provide.

Studies have highlighted issues such as the need for precise tuning of fractional orders to avoid
erratic convergence paths [9, 10]. Additionally, challenge of converging to a real extreme point en-
countered by the existing fractional gradient algorithms is addressed in [11]. These challenges under-
score the need for robust fractional SGD variants that balance computational efficiency with stable
convergence. A geometry-aware strategy like Two-Scale Effective Dimension (2SED) can dynamically
regulate the fractional exponent in FOSGD. By examining partial diagonal approximations of the
Fisher information matrix [15], 2SED identifies regions of high sensitivity and adapts the exponent
accordingly. This approach dampens updates in areas prone to instability while exploiting longer
memory in flatter regions. Consequently, combining 2SED with FOSGD reduces erratic oscillations,
preserves long-term memory benefits, and yields more robust performance across diverse data sets
and problem types. We introduce a novel 2SED-driven FOSGD framework that dynamically regu-
lates the fractional exponent using the dimension-aware metrics of 2SED. This adaptive mechanism
aligns historical-gradient memory with the sensitivity of the optimization landscape, thereby enhanc-
ing stability and data alignment. Under standard smoothness and bounded-gradient assumptions,
the method satisfies strong convergence criteria. In practice, geometry-based regularization fosters a
more consistent convergence, as evidenced by solving an autoregressive (AR) model under Gaussian
and α-stable noise. We organize this paper as follows. In Section 2, we thoroughly examine the
2SED algorithm, illustrating how it approximates second-order geometry to produce dimension-aware
updates. Section 3 reviews FOSGD, highlighting its appeal for long-memory processes and the hyper-
parameter dilemmas that hinder practicality. Also, we detail how to embed 2SEDs dimension metrics
into the fractional framework, providing both equations and pseudo-code. Section 4 delves into a con-
vergence analysis, establishing theoretical performance bounds for our method. Section 5 showcases
experiments across different tasks, such as an auto-regressive (AR) model and image classification,
demonstrating that 2SED-driven exponent adaptation yields measurably stronger results. Finally, Sec-
tion 6 concludes by summarizing key findings, identifying broader implications for optimization, and
suggesting directions for further research in advanced fractional calculus and dimension-based learn-
ing techniques. This overarching narrative underscores the growing intersection between fractional
approaches and dimension-aware strategies. Aligning memory-based methods with geometry-aware
design, we move closer to an optimization paradigm that capitalizes on historical information without
succumbing to the pitfalls of unbounded memory effects. Our findings thus underscore the promise of
2SED + FOSGD as a more stable algorithmic solution poised for wide adoption in deep learning.

2. Two-Scale Effective Dimension (2SED) and Fractional-Order SGD

Classical complexity measures, such as the Vapnik-Chervonenkis (VC) dimension [16] or raw pa-
rameter counts, often overestimate the capacity of overparameterized neural networks. Zhang et al.
[17] demonstrate that deep networks, such as Inception-style models with millions of parameters, gen-
eralize well despite their ability to memorize random labels, undermining naive VC-based bounds.
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This discrepancy arises because many directions in the high-dimensional parameter space Θ ⊆ Rd
are “flat,” contributing minimally to model outputs, while a subset of sensitive directions dominates
learning [18].

Curvature-aware approaches, leveraging the Fisher Information Matrix (FIM) [19], better capture
local sensitivity. We adopt the Two-Scale Effective Dimension (2SED) [15], which integrates global
parameter counts with local curvature effects encoded in the FIM, offering a more nuanced complexity
measure than Hessian-based metrics [20] or K-FAC approximations [21]. In this section, we define
2SED and its layer-wise variant, Lower 2SED, and propose their use in adapting fractional-order
stochastic gradient descent (FOSGD) to improve optimization stability and generalization.

2.1. Foundational Definitions. We consider a neural network with L layers, where layer j has
parameters θj ∈ Rdj , and the parameter space is Θ = Θ1 × · · · × ΘL ⊆ Rd, with d =

∑L
j=1 dj.

The Fisher Information Matrix (FIM) and 2SED are computed layer-wise to adapt optimization
updates, leveraging the Markovian structure of feed-forward networks [15]. Each layers parameter
vector θj ∈ Θj ⊆ Rdj represents the trainable weights and biases, while Θj is the bounded domain of
possible parameter values, ensuring regularity in the statistical model.

Definition 2.1 (Fisher Information [15]). For a statistical model pθ(x, y) with parameters θ ∈ Θ ⊆ Rd,
assuming pθ is differentiable and non-degenerate, define the log-likelihood as

`θ(x, y) = log pθ(x, y).

The Fisher Information Matrix F (θ) is given by

F (θ) = E(x,y)∼pθ [(∇θ`θ(x, y))⊗ (∇θ`θ(x, y))] , (2.1)

where ⊗ denotes the outer product and the expectation is over pθ. Under regularity conditions, this
equals E[−∇2

θ`θ(x, y)] [19].

Definition 2.2 (Empirical Fisher). [15] Given an i.i.d. sample {(Xi, Yi)}Ni=1, the empirical Fisher
Information Matrix is

FN(θ) =
1

N

N∑
i=1

(∇θ`θ(Xi, Yi))⊗ (∇θ`θ(Xi, Yi)) , (2.2)

converging to F (θ) as N →∞.

Definition 2.3 (Normalized Fisher Matrix [15]). The normalized Fisher matrix F̂ (θ) rescales F (θ)
so that

Eθ[TrF̂ (θ)] = d,

where d = dim(Θ). Formally,

F̂ (θ) =

{
d

Eθ[TrF (θ)]
F (θ), if Eθ[TrF (θ)] > 0,

0, otherwise.
(2.3)

2.2. The 2SED Approach. Although d = dim(Θ) represents the nominal number of parameters,
many directions in Θ are flat, contributing minimally to the loss [18]. The Two-Scale Effective Di-
mension (2SED) integrates a curvature-based term derived from the Fisher Information Matrix with
the parameter count d, capturing the effective dimensionality of active directions.

Definition 2.4 (Two-Scale Effective Dimension [15]). Let F̂ (θ) be the normalized Fisher matrix,
positive semi-definite under mild conditions. For 0 < ε < 1 and ζ ∈

[
2
3
, 1
)
, the 2SED is:

dζ(ε) = ζd+ (1− ζ)dcurv(ε), (2.4)

where

dcurv(ε) =
logEθ

[
det

(
Id + εζ−1F̂ (θ)

1
2

)]
∣∣log (εζ−1)

∣∣ . (2.5)

Here, Id is the d× d identity matrix, and F̂ (θ)
1
2 is the positive semi-definite square root of F̂ (θ).
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For layer-wise optimization, we compute d
(j)
ζ (ε) for each layer j, using the layer-wise FIM Fj(θj),

approximated empirically as in Definition 2.2. The parameter ζ balances the nominal dimension
dj and the curvature term dcurv(ε). Smaller ε amplifies the contribution of significant eigenvalues,
emphasizing high-curvature directions. As ζ → 0, 2SED prioritizes curvature-based modes, while ζ →
1 recovers the nominal dimension dj. The term log det

(
Id + εζ−1F̂ (θ)

1
2

)
summarizes the spectrum of

F̂ (θ)
1
2 , emphasizing directions with large eigenvalues (high curvature) while suppressing flat directions.

Rewriting the determinant as
∏
i

(
1 + εζ−1λ

1/2
i

)
, we get:

dcurv(ε) =

∑d
i=1 log

(
1 + εζ−1λ

1/2
i

)
∣∣log (εζ−1)

∣∣ , (2.6)

where λi are the eigenvalues of F̂ (θ). This aligns with information geometry, capturing the effective
degrees of freedom in parameter space [19].

2.2.1. Lower 2SED for Layer-wise Complexity. The Lower 2SED is a critical component of our 2SED-
FOSGD algorithm, enabling efficient and adaptive optimization in deep neural networks. Unlike the
global 2SED, which requires computing the Fisher Information Matrix (FIM) for all model parame-
tersa computationally prohibitive task for deep architectures like ResNet-50 with millions of param-
eters Lower 2SED leverages the Markovian structure of feed-forward networks to compute layer-wise
complexity measures. This reduces memory requirements from O(d2) to O(d2

j) per layer, where dj
is the number of parameters in layer j, and enables scalable computation. By providing a per-layer
complexity metric, djζ(ε), Lower 2SED allows 2SEDFOSGD to dynamically adjust the fractional-order

exponent α
(j)
t for each layer, tailoring updates to the local curvature of the loss landscape. This leads to

faster convergence and improved generalization compared to standard FOSGD, which uses a uniform
fractional order [22]. The Lower 2SED, introduced by Datres et al. [15] for Markovian models like
CNNs, is defined iteratively for each layer j = 1, . . . , L of a model with parameters θ = (θ1, . . . , θL),
where θj ∈ Θj. The FIM for layer j is:

Fj(θ1, . . . , θj) = Ex0,...,xj−1

[∫
Xj

(
∇θj log pθj (xj | xj−1)

)
×
(
∇θj log pθj (xj | xj−1)

)T
pθj (dxj | xj−1)

]
,

(2.7)

where pθj (xj | xj−1) is the conditional output distribution of layer j. To model deterministic CNN
outputs probabilistically, we assume layer outputs follow a Gaussian distribution with mean equal to
the deterministic output and variance σ2 = 0.01, as in [15]. The Lower 2SED is computed as:

djζ(ε) = dj−1
ζ (ε)

+
1− ζ
| log ε|

∮
Θ̂j

∫
Θj

log det
(
Ij + εζ−1Fj(θ1, . . . , θj)

1
2

)
× dθjdΦj,

(2.8)

where Θ̂j = Θ1 × · · · × Θj−1, dΦj is a normalized measure over previous layers parameters, and
d1
ζ(ε) is computed for the first layer (see [15] for details). In practice, Fj is approximated empirically

using Monte Carlo integration. The Lower 2SED, djζ(ε), replaces 2SED in our 2SEDFOSGD algorithm
(Algorithm 1), scaling fractional-order gradients layer-wise to enhance convergence and generalization.
The selection of the parameter ζ in the two-scale effective dimension (2SED) is pivotal for balancing
theoretical rigor and practical applicability in deep learning model complexity analysis. As specified
in Theorem 5.1 in [15], ζ ∈

[
2
3
, 1
)

ensures the validity of the generalization bound.
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3. Fractional-Order SGD and 2SED Adaptation

Classical stochastic gradient descent (SGD) updates parameters using instantaneous gradients.
However, optimization in deep learning often exhibits memory effects, suggesting that incorporat-
ing past gradients could improve convergence. Fractional calculus, via the Caputo derivative, provides
a principled way to encode gradient history, with the fractional order α controlling the memory effect
[23].

3.1. Caputo Fractional Derivative and Fractional Updates.

Definition 3.1 (Caputo Derivative [23]). For n − 1 < α < n, the Caputo fractional derivative of a
function f is:

Dα
t f(t) =

1

Γ(n− α)

∫ t

0

f (n)(τ)

(t− τ)α−n+1
dτ. (3.1)

The Caputo form is preferred in optimization as it handles initial conditions naturally and yields zero
for constant functions [22].

In discrete optimization, the classical gradient ∇f(θt) is replaced by the fractional gradient Dα
t f(θt).

The fractional-order SGD update is [22] θt+1 = θt−ηDα
t f(θt). For α ∈ (0, 1), δ > 0, and using a Taylor

series approximation [22]:

θt+2 = θt+1 − µt
∇f(θt+1)

Γ(2− α)
(|θt+1 − θt|+ δ)

1−α
. (3.2)

The offset δ > 0 prevents stalling when consecutive iterates are similar.

3.2. Adapting the Fractional Exponent via Lower 2SED. To adapt the fractional exponent
for each layer j of the neural network, where layer j has parameters θ(j) ∈ Rdj , we compute the

2SED d
(j)
ζ (ε)|t for layer j at iteration t. A fixed fractional exponent α can lead to instability if the

model’s curvature changes dramatically during training. Intuitively, high curvature or high 2SED

indicates directions of rapid change or “sensitivity,” so a smaller α
(j)
t (closer to 0) is preferred, as it

increases the memory effect by amplifying the fractional term
(
|θ(j)
t+1 − θ

(j)
t |+ δ

)1−α(j)
t

in the update

rule. This smooths updates, enhancing stability and preventing overshooting in these sensitive di-
rections. Conversely, in regions with low curvature or low 2SED, which correspond to flatter areas

of the optimization landscape, a larger α
(j)
t (closer to α0) is preferred, as it reduces the influence of

the fractional term, making the update resemble standard SGD. This allows for faster convergence
by relying more on the current gradient in regions where large steps are safer. Hence, we propose a
2SED-based FOSGD that dynamically adjusts α using 2SED of each layer. Suppose we compute the

2SED, d
(j)
ζ (ε), for layer j and let α

(j)
t = α0 − β ×

d
(j)
ζ (ε)

∣∣
t

dmax
, where α0 is a base fractional order, β > 0

is a tuning parameter and dmax is the maximum observed 2SED among all layers. The fraction
d

(j)
ζ (ε)

∣∣
t

dmax

scales the current 2SED to the range [0, 1].
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Algorithm 1 2SED-Based Fractional-Order SGD (2SEDFOSGD)

Input: Neural network with L layers; parameters θ0 ∈ Rd; loss function f(θ); base fractional order
α0 ∈ (0, 1]; tuning parameter β > 0; singularity offset δ > 0; base learning rate µ0 > 0; 2SED balance

parameter ζ; curvature sensitivity ε; maximum iterations tmax ∈ N.
Initialize: θ1 ← θ0 − µ0∇f(θ0) (classical SGD step).

1: for t = 1, 2, . . . , tmax − 1 do
2: Compute gradient: g(θt)← ∇f(θt)
3: Compute Fisher matrices: Fj(θ

t) for j = 1, . . . , L
4: for j = 1, . . . , L do

5: Compute d
(j)
ζ (ε)

∣∣
t

6: Compute dmax ← maxj,k d
(j)
ζ (ε)

∣∣
k

7: Compute α
(j)
t ← α0 − β ×

d
(j)
ζ (ε)

∣∣
t

dmax

8: end for
9: Update learning rate: µt ← µ0√

t

10: for j = 1, . . . , L do

11: Update parameters: θ
(j)
t+1 ← θ

(j)
t − µt

Γ(2−α(j)
t )
×
(∣∣∣θ(j)

t − θ
(j)
t−1

∣∣∣+ δ
)1−α(j)

t

gj(θ
t)

12: end for
13: end for
14: Output: θtmax ∈ Rd . Final optimized parameters

3.3. 2SEDFOSGD Algorithm.

4. Convergence Analysis for Convex Objectives

This section provides a detailed convergence proof for the 2SEDFOSGD algorithm under convex
objectives, where the fractional order αj ∈ (0, 1] for each layer j is dynamically adjusted based on
the Two-Scale Effective Dimension (2SED). The 2SED quantifies the effective number of parame-
ters by combining the nominal parameter count with curvature information derived from the Fisher
Information Matrix. We prove convergence in terms of the expected function value gap, ensuring
min1≤s≤T E[f(θs) − f(θ?)] = O(1/

√
T ). The analysis contains an explicit fractional factor bounds,

precise descent lemma constants, and corrected step-size summations.

4.1. Foundational Definitions and Assumptions.

Assumption 1 (Convex Objective). Let f(θ) : Rd → R be convex, with θ = (θ1, . . . , θL), θj ∈ Rdj ,
and

∑
j dj = d. For ∀λ ∈ [0, 1], θ, θ′ ∈ Rd, convexity implies:

f(λθ + (1− λ)θ′) ≤ λf(θ) + (1− λ)f(θ′). (4.1)

We assume f is differentiable, ensuring ∇f(θ) exists everywhere, and let θ? = argminθ f(θ).

Assumption 2 (Smoothness and Lipschitz Continuity). The function f is L-smooth, meaning for
any θ, θ′ ∈ Rd:

‖∇f(θ)−∇f(θ′)‖ ≤ L‖θ − θ′‖.
The gradients are bounded, i.e., ‖∇f(θ)‖ ≤ G for all θ ∈ Rd, where G > 0.

Assumption 3 (Bounded Iterates). We assume the iterates are bounded, with ‖θjt − θjt−1‖ ≤ R∆ for
some R∆ > 0, ensured by the step-size schedule and gradient bounds (Proposition 4.1).

Assumption 4 (Fractional Derivative Parameters). The base fractional order is defined as α0 ∈ (0, 1],
serving as the starting point for the adaptive fractional order for each layer j. Specifically, the fractional

order for layer j is given by αj = α0−β
djζ(ε)

dmax
, where djζ(ε) is the Two-Scale Effective Dimension (2SED)
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for layer j, and dmax = maxk,t d
k
ζ (ε)|t represents the maximum 2SED across all layers k and iterations

t. The parameter β > 0 is chosen to ensure that αj ∈ (0, 1], as established by Lemma 4.2, thereby
maintaining the validity of the fractional order within the required range.

Assumption 5 (Fractional Factor Boundedness). The update for layer j is θjt+1 = θjt − µt
Γ(2−αj)(‖θ

j
t −

θjt−1‖ + δ)1−αjgj(θt), where µt = µ0√
t
, µ0 > 0, δ > 0 is a small constant to prevent singularities, and

gj(θt) is the stochastic gradient for layer j.
To bound the effective step size ηjt , we analyze the fractional factor in the update rule. Since the
fractional order αj ∈ (0, 1], we have 2 − αj ∈ [1, 2], and the gamma function Γ(x), being positive
and continuous, satisfies 1 ≤ Γ(2 − αj) ≤ 1.6. We define cΓ = Γ(2) = 1 and CΓ = Γ(1) = 1 as the
lower and upper bounds, respectively, noting that Γ(2− αj) is typically close to 1 but may reach up

to 1.6 for small αj. Additionally, the term (‖θjt − θjt−1‖ + δ)1−αj is bounded given ‖θjt − θjt−1‖ ≤ R∆.
With αj,max = maxj,t αj and αj,min = minj,t αj, we set c∆ = δ1−αj,min and C∆ = (δ +R∆)1−αj,max ,

ensuring 0 < c∆ ≤ (‖θjt − θjt−1‖ + δ)1−αj ≤ C∆ < ∞. Consequently, the effective step size satisfies

ηjt ∈
[
µt

c∆
CΓ
, µt

C∆

cΓ

]
.

Assumption 6 (Stochastic Gradient Bounds). For the stochastic gradients used in the optimization,
we assume that the stochastic gradient gj(θt) for layer j at iteration t is an unbiased estimate of the
true gradient, satisfying E[gj(θt)] = ∇jf(θt). Additionally, the variance of the stochastic gradient is
bounded, with E[‖gj(θt) − ∇jf(θt)‖2] ≤ σ2, where σ2 ≥ 0 is a positive constant. Furthermore, the
norm of the stochastic gradient is bounded such that ‖gj(θt)‖ ≤ G + σ, where G > 0 represents the
bound on the true gradient norm ‖∇f(θ)‖.

Assumption 7 (Step-Size Schedule). The step-size schedule is defined as µt = µ0√
t
, where µ0 > 0 is

a positive constant, and this schedule satisfies specific bounds on its sums. Specifically, the sum of
the step sizes over T iterations is bounded by

∑T
t=1 µt ≤ µ0(2

√
T − 1), ensuring controlled growth

proportional to
√
T . Additionally, the sum of the squared step sizes is bounded by

∑T
t=1 µ

2
t ≤ µ2

0(1 +
lnT ), reflecting a logarithmic growth that maintains stability in the optimization process.

4.2. Propositions and Lemmas.

Proposition 4.1 (Bounded Iterates [1]). For µt = µ0√
t

(and µ0 for t = 0), ‖gj(θt)‖ ≤ G + σ, the

iterates satisfy:

‖θjt − θjt−1‖ ≤ R∆ = µ0

C∆

cΓ

(G+ σ).

Lemma 4.2 (Bounding the 2SED Measure [1]). Let djζ(ε) be the 2SED for layer j, updated via

exponential moving averages of Fisher blocks. Assume the gradients satisfy E[‖gj(θt)‖2] ≤ G2 + σ2,
where G2 and σ2 are positive constants. There exists a finite constant dmax,finite > 0 such that:

djζ(ε) ≤ dmax,finite, ∀t, j.

Lemma 4.3 (Descent Lemma [1]). For convex f , with layerwise updates θjt+1 = θjt − ηjt gj(θt):

E[f(θt+1) | θt] ≤ f(θt)−
∑
j

ηjt
cΓ

2C∆

‖∇jf(θt)‖2

+
∑
j

(ηjt )
2C

2
∆

c2
Γ

(G2 + σ2).

4.3. Main Convergence Theorem.

Theorem 4.4 (Convergence in Convex Setting). Under the above assumptions, the iterates {θt}
satisfy min1≤s≤T E[f(θs)− f(θ?)] = O(1/

√
T ) as T →∞.



Effective Dimension Aware Fractional-Order SGD for Convex Optimization Problems 149

Proof. From Lemma 4.3:

E[f(θt+1)− f(θ?) | θt] ≤ f(θt)− f(θ?)

− C1

∑
j

ηjt‖∇jf(θt)‖2 + C2

∑
j

(ηjt )
2.

where C1 = cΓ
2C∆

, C2 = C2
∆

c2Γ
(G2 + σ2). Taking expectations:

E[f(θt+1)− f(θ?)] ≤ E[f(θt)− f(θ?)]

− C1E

[∑
j

ηjt‖∇jf(θt)‖2
]

+ C2E

[∑
j

(ηjt )
2

]
.

Summing from t = 1 to T :

E[f(θT+1)− f(θ?)] ≤ f(θ1)− f(θ?)

− C1

T∑
t=1

E

[∑
j

ηjt‖∇jf(θt)‖2
]

+ C2

T∑
t=1

E

[∑
j

(ηjt )
2

]
.

Since f(θT+1) ≥ f(θ?), we have:

C1

T∑
t=1

E

[∑
j

ηjt‖∇jf(θt)‖2
]
≤ f(θ1)− f(θ?)

+ C2

T∑
t=1

E

[∑
j

(ηjt )
2

]
.

Bound the error term: ∑
j

(ηjt )
2 ≤ Lµ2

t

C2
∆

c2
Γ

,
T∑
t=1

µ2
t ≤ µ2

0(1 + lnT ).

Thus:
T∑
t=1

E

[∑
j

(ηjt )
2

]
≤ Lµ2

0(1 + lnT )
C2

∆

c2
Γ

.

Bound the gradient term:

∑
j

ηjt ≥ Lµt
c∆

CΓ

,
T∑
t=1

µt ≥
T∑
t=1

µ0√
t
≥
∫ T

1

µ0√
x
dx = 2µ0(

√
T − 1).

So:
T∑
t=1

∑
j

ηjt ≥ Lµ0

c∆

CΓ

· 2(
√
T − 1).

The expected function value gap is:

min
s≤T

E[f(θs)− f(θ?)] ≤ 1

T

T∑
t=1

E[f(θt)− f(θ?)].

Using Jensens inequality for convex f , E[f(θt)] ≥ f(E[θt]), and assuming f(θt)− f(θ?) ≤ fmax − fmin,
we bound:

T∑
t=1

E[f(θt)− f(θ?)] ≤ C1

T∑
t=1

E

[∑
j

ηjt‖∇jf(θt)‖2
]
.
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Thus:
1

T

T∑
t=1

E[f(θt)− f(θ?)] ≤ f(θ1)− f(θ?) + C2Lµ
2
0(1 + lnT )

C1Lµ0
c∆
CΓ

2(
√
T − 1)

.

For large T , the dominant term in the denominator is 2
√
T , so:

min
s≤T

E[f(θs)− f(θ?)] ≤ f(θ1)− f(θ?) + C2Lµ
2
0(1 + lnT )

C1Lµ0
c∆
CΓ
· 2
√
T

= O(1/
√
T ).

since lnT/
√
T → 0. Hence, the convergence rate is O(1/

√
T ). �

5. Illustrative Examples

To illustrate the effectiveness of the proposed algorithm, we first consider a system identification
task based on an auto-regressive (AR) model of order p. The system output is given by [22] y(k) =∑p

i=1 aiy(k−i)+ξ(k), where y(k−i) denotes the output at time k−i, ξ(k) is a stochastic noise sequence,
and ai are the parameters to be estimated. Our objective is to determine these unknown coefficients.

The corresponding regret function is Jk(θ̂) = 1
2

[
y(k)−φT (k)θ̂(k)

]2
, with θ̂(k) = [â1(k), . . . , âp(k)]T and

φ(k) = [y(k−1), . . . , y(k−p)]T . We consider an AR model: y(k) = 1.5y(k−1)−0.7y(k−2)+ξ(k), where
ξ(k) is α-stable noise with zero mean and variance 0.5. The goal is to estimate the true coefficients
a1 = 1.5 and a2 = −0.7 under α0 = 0.98 and β = 0.01.

Figure 4. Convergence of a1 and a2 under α-stable noise.

Figure 4 illustrates the convergence of absolute errors in a1 (left) and a2 (right) under α-stable
noise (α = 1.8), comparing FOSG and 2SEDFOSGD. 2SEDFOSGD achieves smoother, lower error
trajectories by adapting to heavy-tailed fluctuations, while FOSGD exhibits spikes due to its sensitivity
to outliers.

6. Conclusion

In this paper, we proposed the 2SED Fractional-Order Stochastic Gradient Descent (2SEDFOSGD)
algorithm, which augments fractional-order SGD (FOSGD) with a Two-Scale Effective Dimension
(2SED) framework to dynamically adapt the fractional exponent. By continuously monitoring model
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sensitivity and effective dimensionality, 2SEDFOSGD mitigates oscillatory or sluggish convergence
behaviors commonly encountered with naive fractional approaches. We evaluated the performance of
2SEDFOSGD through a system identification task using an autoregressive (AR) model under both
Gaussian and α-stable noise.

Declaration of AI Use: During the preparation of this work, the authors used Copilot to check grammar

and improve readability.
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1. Introduction

Let {ek}mk=1 be the standard basis of the space Rm. Suppose that Rm is equipped with the l1−norm
‖x‖1 :=

∑m
k=1 |xk| where x = (x1, · · · , xm)T ∈ Rm. We say that x ≥ 0 (respectively, x > 0) if xk ≥ 0

(respectively, xk > 0) for all k ∈ Im := {1, 2, 3, · · · ,m}. Let Sm−1 = {x ∈ Rm : x ≥ 0, ‖x‖1 = 1} be
the (m − 1)−dimensional standard simplex. An element of the simplex Sm−1 is called a stochastic
vector. Let c = ( 1

m
, · · · , 1

m
)T be the center of the simplex Sm−1. Let intSm−1 = {x ∈ Sm−1 : x > 0}

and ∂Sm−1 = Sm−1 \ intSm−1 be, respectively, an interior and boundary of the simplex Sm−1.

1.1. Higher-Order Singly and Doubly Stochastic Hyper-Matrices. Let us first recall the def-
initions of higher-order singly and doubly stochastic hyper-matrices.

Definition 1.1 (Higher-Order Singly Stochastic Hyper-Matrix). A (k + 1)−order m−dimen-

sional hyper-matrix Pk+1 =
(
pi1···ikj

)m,··· ,m,m
i1,··· ,ik,j=1

is called stochastic if one has that

m∑
j=1

pi1···ikj = 1, pi1···ikj ≥ 0, ∀ i1, · · · , ik, j ∈ Im.

Definition 1.2 (Higher-Order Doubly Stochastic Hyper-Matrix). A (k+1)−order m−dimen-

sional hyper-matrix Pk+1 =
(
pi1···ikj

)m,··· ,m,m
i1,··· ,ik,j=1

is called doubly stochastic if one has that

m∑
ik=1

pi1···ikj =
m∑
j=1

pi1···ikj = 1, pi1···ikj ≥ 0, ∀ i1, · · · , ik, j ∈ Im.

Let P : Sm−1 → Sm−1 be a polynomial stochastic operator

P(x) :=
m∑
i1=1

· · ·
m∑
ik=1

xi1 · · ·xikpi1···ik•, ∀ x ∈ Sm−1, (1.1)

where Pk+1 =
(
pi1···ikj

)m,··· ,m,m
i1,··· ,ik,j=1

is a (k+ 1)−order m−dimensional stochastic hyper-matrix such that

pi1···ik• := (pi1···ik1, · · · , pi1···ikm) ∈ Sm−1, ∀ i` ∈ Im, ` ∈ Ik.

It is worth mentioning that if k = 2 then we derive a quadratic stochastic operator and if k = 3
then we derive a cubic stochastic operator.

Historically, a quadratic stochastic operator was first introduced by S. Bernstein [1], back in 1942. A
quadratic stochastic process (see [2, 22]) is the simplest nonlinear Markov chain. The analytic theory
of the quadratic stochastic process generated by cubic stochastic matrices was established in the papers
[2, 22]. The quadratic stochastic operator was considered an important source of analysis for the study
of dynamical properties and modeling in various fields such as biology, physics, control system. The
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fixed point sets, omega limiting sets, ergodicity and chaotic dynamics of quadratic stochastic operators
defined on a finite-dimensional simplex were studied in the references [3, 4, 5, 6]. A long, self-contained
exposition of recent achievements and open problems in the theory of quadratic stochastic operators
and processes were presented in the references [7, 16]. The analytic theory of the cubic stochastic
processes was established in the paper [19]. Accordingly, the fixed point sets, omega limiting sets,
ergodicity and chaotic dynamics of cubic stochastic operators defined on a finite-dimensional simplex
were studied in the references [8, 9, 10, 11, 12, 14, 15, 17, 18, 20, 21].

In this paper we are aiming to study a global stability problem for polynomial stochastic operators
(1.1) associated with higher-order diagonally primitive doubly stochastic hyper-matrices.

1.2. Global Stability. Let us now recall a notion of global stability of polynomial operators associ-
ated with higher-order stochastic hyper-matrices.

Definition 1.3 (Global Stability, [13]). Let P : Sm−1 → Sm−1 be a polynomial stochastic operator
given by (1.1) and let q ∈ Sm−1 be a fixed point, i.e., P(q) = q. A fixed point q ∈ Sm−1 is called globally
stable within the simplex Sm−1 if one has that lim

n→∞
P(n)(x) = q for any initial point x ∈ Sm−1, where

P(n+1)(x) = P(P(n)(x)) for all n ∈ N. In this case, a polynomial stochastic operator P : Sm−1 → Sm−1

given by (1.1) is also called globally stable within the simplex Sm−1.

1.3. The Matrix Form. Throughout this section, we always assume that a (k + 1)−order

m−dimensional hyper-matrix Pk+1 =
(
pi1···ikj

)m,··· ,m,m
i1,··· ,ik,j=1

is doubly stochastic unless explicitly spec-

ified otherwise. Furthermore, it is important to emphasize that we do not impose the condition

pi1i2···ik,j = piπ(1)iπ(2)···iπ(k),j

where π is a permutation of the set Ik.
Let Pk+1 =

(
pi1···ikj

)m,··· ,m,m
i1,··· ,ik,j=1

be the (k+ 1)−order m−dimensional doubly stochastic hyper-matrix

and P•···•l|k = (pi1···ikl)
m,··· ,m
i1,··· ,ik=1 be its k−order m−dimensional lth subhyper-matrix for fixed l ∈ Im. It

is clear that P•···•l|k = (pi1···ikl)
m,··· ,m
i1,··· ,ik=1 is also stochastic hyper-matrix.

We define a polynomial stochastic operator P : Sm−1 → Sm−1 associated with (k + 1)−order

m−dimensional doubly stochastic hyper-matrix Pk+1 =
(
pi1···ikj

)m,··· ,m,m
i1,··· ,ik,j=1

as follows

(P(x))l =
m∑
i1=1

· · ·
m∑
ik=1

pi1···ikl xi1 · · ·xik , ∀l ∈ Im. (1.2)

We also define a polynomial stochastic operator Pl : Sm−1 → Sm−1 associated with the k−order
m−dimensional stochastic hyper-matrix P•···•l|k = (pi1···ikl)

m,··· ,m
i1,··· ,ik=1 as

(Pl(x))j =
m∑
i1=1

· · ·
m∑

ik−1=1

pi1···ik−1jl xi1 · · ·xik−1
, ∀j ∈ Im. (1.3)

for all l ∈ Im. It follows from (1.2) and (1.3) that

(P(x))l =
m∑
j=1

(Pl(x))j xj =
(
Pl(x),x

)
, ∀l ∈ Im.

where (·, ·) stands for the standard inner product of two vectors.
Therefore, the polynomial stochastic operator P : Sm−1 → Sm−1 given by (1.2) can be written as

follows

P(x) =
((

P1(x),x
)
, · · · ,

(
Pm(x),x

))T
(1.4)

where Pl : Sm−1 → Sm−1 is defined by (1.3) for all l ∈ Im.
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We now define an m×m matrix as follows

P(x) =


(
P1(x)

)
1

(
P1(x)

)
2
· · ·

(
P1(x)

)
m(

P2(x)
)

1

(
P2(x)

)
2
· · ·

(
P2(x)

)
m

...
...

. . .
...(

Pm(x)
)

1

(
Pm(x)

)
2
· · ·

(
Pm(x)

)
m

 . (1.5)

We show that P(x) is doubly stochastic matrix for every x ∈ Sm−1. In fact we know that P(x) =(
plj(x)

)m
l,j=1

where

plj(x) =
(
Pl(x)

)
j

=
m∑
i1=1

· · ·
m∑

ik−1=1

pi1···ik−1jl xi1 · · ·xik−1
. (1.6)

Therefore, it follows from (1.6) that

m∑
l=1

plj(x) =
m∑
i1=1

· · ·
m∑

ik−1=1

(
m∑
l=1

pi1···ik−1jl

)
xi1 · · ·xik−1

=
m∑
i1=1

· · ·
m∑

ik−1=1

xi1 · · ·xik−1
= (x1 + · · ·+ xm)k−1 = 1,

m∑
j=1

plj(x) =
m∑
i1=1

· · ·
m∑

ik−1=1

(
m∑
j=1

pi1···ik−1jl

)
xi1 · · ·xik−1

=
m∑
i1=1

· · ·
m∑

ik−1=1

xi1 · · ·xik−1
= (x1 + · · ·+ xm)k−1 = 1.

Hence, it follows from (1.4) and (1.5) that

P(x) = P(x)x (1.7)

and it is called matrix form of the polynomial stochastic operator P : Sm−1 → Sm−1 (1.2) associated

with the (k + 1)−order m−dimensional doubly stochastic hyper-matrix Pk+1 =
(
pi1···ikj

)m,··· ,m,m
i1,··· ,ik,j=1

.

2. The Main Result

Let us first introduce a notion of higher-order diagonally primitive doubly stochastic hyper-matrices.

Definition 2.1 (Higher-Order Diagonally Primitive Doubly Stochastic Hyper-Matrices).

A (k + 1)−order m−dimensional doubly stochastic hyper-matrix Pk+1 =
(
pi1···ikj

)m,··· ,m,m
i1,··· ,ik,j=1

is called

diagonally primitive if its diagonal matrix diag(Pk+1) :=
(
pi···ij

)m,m
i,j=1

is a primitive square stochastic

matrix, i.e., there exists s ∈ N such that the sth−power of the square stochastic matrix diag(Pk+1) :=(
pi···ij

)m,m
i,j=1

is positive, i.e.,
[
diag(Pk+1)

]s
> 0 where

diag(Pk+1) :=


p1···11 p1···12 · · · p1···1m
p2···21 p2···22 · · · p2···2m

...
...

. . .
...

pm···m1 pm···m2 · · · pm···mm

 .

We are now ready to state the main result of this section.
Let e1 = (1, 0, 0, · · · , 0)T , e2 = (0, 1, 0, · · · , 0)T , em = (0, 0, 0, · · · , 1)T be vertices of the simplex

Sm−1 and e
(n+1)
l := P

(
e

(n)
l

)
, where e

(1)
l := el for all l ∈ Im and n ∈ N. Let x(n+1) := P

(
x(n)

)
for all

n ∈ N be a trajectory starting from an initial point x(1).
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Theorem 2.2 (Global Stability Criterion). Let Pk+1 =
(
pi1···ikj

)m,··· ,m,m
i1,··· ,ik,j=1

be a (k + 1)−order

m−dimensional doubly stochastic hyper-matrix and let P : Sm−1 → Sm−1 be the associated polynomial
stochastic operator. Assume that a (k + 1)−order m−dimensional doubly stochastic hyper-matrix

Pk+1 =
(
pi1···ikj

)m,··· ,m,m
i1,··· ,ik,j=1

is diagonally primitive. Then the trajectory {x(n)}∞n=1 starting from any

initial point x(1) ∈ Sm−1 of the simplex Sm−1 converges to the center c = ( 1
m
, · · · , 1

m
)T of the simplex

Sm−1 if and only if for each l ∈ Im there exists nl ∈ N such that e
(nl)
l ∈ intSm−1.

Proof. The “only if” part. Let us assume that the trajectory {x(n)}∞n=1 starting from any initial
point x(1) ∈ Sm−1 of the simplex Sm−1 converges to the center c = ( 1

m
, · · · , 1

m
)T of the simplex Sm−1.

Particularly, the trajectory {e(n)}∞n=1 starting from any vertex e
(1)
k := ek, k ∈ Im of the simplex Sm−1

also converges to the center c = ( 1
m
, · · · , 1

m
)T of the simplex Sm−1. Consequently, since c ∈ intSm−1,

it is evident that for every l ∈ Im there exists nl ∈ N such that e
(nl)
l ∈ intSm−1.

The “if” part. Let
{
x(n)

}∞
n=1

where x(n+1) = P(x(n)) be a trajectory of the polynomial stochastic

operator P : Sm−1 → Sm−1 starting from an initial point x(1) ∈ Sm−1. Particularly, let
{

e
(n)
l

}∞
n=1

be

a trajectory of the polynomial stochastic operator P : Sm−1 → Sm−1 starting from a vertex el of the
simplex Sm−1 for all l ∈ Im. According to the definition, the multi-agent system eventually reaches
a consensus if {x(n)}∞n=1 converges to the center c = ( 1

m
, · · · , 1

m
)T of the simplex Sm−1 for any initial

point x(1) ∈ Sm−1. We accomplish it under two hypotheses:

(i) For each l ∈ Im one has e
(nl)
l ∈ intSm−1 for some nl ∈ N;

(ii) A doubly stochastic hyper-matrix Pk+1 =
(
pi1···ikj

)m,··· ,m,m
i1,··· ,ik,j=1

is diagonally primitive.

Step-1. We first show that P(intSm−1) ⊂ intSm−1. Indeed, let x ∈ intSm−1. This means that xi > 0
for all i ∈ Im. Since P(x) =

(
plj(x)

)m
l,j=1

is a square doubly stochastic matrix and P(x) = P(x)x, we

derive that

0 < min
j∈Im

xj ≤
m∑
j=1

plj(x)xj = (P(x))l , ∀ l ∈ Im.

This means that P(x) ∈ intSm−1.
Step-2. We now show that there exists n0 ∈ N such that for any initial point x(1) ∈ Sm−1 one has

x(n0) ∈ intSm−1. It has been noted that n0 does not depend on an initial point x(1) ∈ Sm−1. Indeed,

since for each l ∈ Im one has e
(nl)
l ∈ intSm−1 for some nl ∈ N, it then follows from the previous step

that for each l ∈ Im one has e
(n)
l ∈ intSm−1 for any n > nl.

Let n0 := max
l∈Im

nl. Then e
(n0)
l ∈ intSm−1 for all l ∈ Im. We now show that x(n0+1) = P(x(n0)) ∈

intSm−1 for any initial point x(1) ∈ Sm−1. In order to prove it, we first prove the following inequality
for any initial point x(1) ∈ Sm−1

x(n+1) ≥ xK(n)
1 e

(n)
1 + x

K(n)
2 e

(n)
2 + · · ·+ xK(n)

m e(n)
m , n ∈ N (2.1)

where K(n) = kn for any n ∈ N. Let us first introduce some necessary notations. Let MPk+1
:

(Rm)×k → Rm be a multi-linear operator associated with (k + 1)−order m−dimensional stochastic

hyper-matrix Pk+1 =
(
pi1···ikj

)m,··· ,m,m
i1,··· ,ik,j=1

as follows

MPk+1

(
y(1),y(2), · · · ,y(k)

)
=

m∑
i1=1

· · ·
m∑
ik=1

y
(1)
i1
y

(2)
i2
· · · y(k)

ik
pi1···ik•

where pi1···ik• = (pi1···ik1, · · · , pi1···ikm) ∈ Sm−1 for any i1, · · · , ik ∈ Im. It is clear that P(x) =
MPk+1

(x,x, · · · ,x) for any x ∈ Sm−1. Moreover, if x = λ1v1 + · · · + λqvq ∈ Sm−1 with v1, · · · ,vq ∈
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Sm−1, λ1 + · · ·+ λq = 1, and λ1, · · · , λq ≥ 0 then

P(x) =
q∑

i1=1

· · ·
q∑

ik=1

λi1 · · ·λikMPk+1
(vi1 , · · · ,vik)

= λk1P(v1) + · · ·+ λkqP(vq) +
∑

at least for two
iµ,iν : iµ 6=iν

λi1 · · ·λikMPk+1
(vi1 , · · · ,vik) (2.2)

Hence, it follows form (2.2) that

x(2) = P(x(1)) = x
K(1)
1 e

(1)
1 + x

K(1)
2 e

(1)
2 + · · ·+ xK(1)

m e(1)
m + remaining terms,

x(3) = P(x(2)) = x
K(2)
1 e

(2)
1 + x

K(2)
2 e

(2)
2 + · · ·+ xK(2)

m e(2)
m + remaining terms,

...

x(n+1) = P(x(n)) = x
K(n)
1 e

(n)
1 + x

K(n)
2 e

(n)
2 + · · ·+ xK(n)

m e(n)
m + remaining terms.

Consequently, the last equality yields the inequality (2.1).

Moreover, it follows from the inequality (2.1) and e
(n)
l > 0 for any n > n0, l ∈ Im that x(n+1) > 0

for any n > n0 and for any x(1) ∈ Sm−1. This shows that x(n+1) ∈ intSm−1 for any n > n0.
Step-3. We now show that for any x(1) ∈ Sm−1 the omega limit set ω

({
x(n)

})
of the sequence

{x(n)}∞n=1 is a subset of the interior intSm−1 of the simplex Sm−1 i.e., ω
({

x(n)
})
b intSm−1. This

indeed follows from the previous step that P(n0+1)(Sm−1) b intSm−1. Since the image of simplex under
the polynomial stochastic operator is a compact set, there exists α > 0 such that

P(n0+1)(Sm−1) ≥ αe := (α, α, · · · , α)T ∀ x ∈ Sm−1.

On the other hand, since the interior intSm−1 of the simplex Sm−1 is an invariant set (see Step-1) and

P(n+1)(Sm−1) ⊂ P(n0+1)(Sm−1) ⊂ Sα

for any n > n0, we have that {x(n)}∞n=n0+1 ⊂ Sα, i.e., x(n) ≥ αe for any n > n0 where

Sα := {x ∈ Sm−1 : x ≥ αe}.

Consequently, the omega limit set ω
({

x(n)
})

of the sequence {x(n)}∞n=1 is a subset of the set Sα, i.e.,

ω
({

x(n)
})
⊂ Sα ⊂ intSm−1 for any x(1) ∈ Sm−1.

Step-4. As we showed in the previous step P(n)(Sm−1) ⊂ Sα for any n > n0. It is therefore enough
to study the dynamics of the polynomial stochastic operator over the set Sα which is an invariant set.
Let x(1) ∈ Sα. Then x(n) ∈ Sα, i.e., x(n) ≥ αe for any n ∈ N. It follows from the matrix form (1.7) of
the polynomial stochastic operator that

x(n+1) = P(x(n)) = P
(
x(n)

)
x(n) = P

(
x(n)

)
· · ·P

(
x(2)

)
P
(
x(1)

)
x(1)

where P (x) is the square doubly stochastic matrix defined by (1.6). Let us set for any two integer
numbers n > r

P[x(n),x(r)] := P
(
x(n)

)
P
(
x(n−1)

)
· · ·P

(
x(r+1)

)
P
(
x(r)

)
.

Then for any n ≥ r ≥ 0, we obtain

x(n+1) = P[x(n),x(1)]x(1) = P[x(n),x(r)]x(r).

Then from (1.6), for a stochastic matrix P(x(n)) =
(
plj(x

(n))
)m
l,j=1

we have

plj(x
(n)) =

m∑
i1=1

· · ·
m∑

ik−1=1

pi1···ik−1jl x
(n)
i1
· · ·x(n)

ik−1
≥ pj···jjlαk > 0
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for any l, j ∈ Im and n ∈ N. Hence, we obtain that

P(x(n)) ≥ αk
[
diag(Pk+1)

]T
, ∀ n ∈ N.

Consequently, since
[
diag(Pk+1)

]s
> 0 for some s ∈ N, the last inequality yields that

P
[
x(n+s),x(n)

]
= P

(
x(n+s)

)
· · ·P

(
x(n+1)

)
P
(
x(n)

)
≥ αks

[[
diag(Pk+1)

]s]T
> 0

for any n ∈ N.

Step-5. Let δ(P) = 1
2

max
i1,i2

m∑
j=1

|pi1j−pi2j| be Dobrushin’s ergodicity coefficient of a square stochastic

matrix P = (pij)
m
i,j=1. We first recall some properties of Dobrushin’s ergodicity coefficient for the

reader’s convenience. The following statements are true for any two square stochastic matrices P and
Q (see [23]):

(i) 0 ≤ δ(P) ≤ 1;

(ii) δ(P) = 0 if and only if rank(P) = 1, i.e., P is a stable stochastic matrix;

(iii) δ(P) < 1 if and only if P is scrambling. If P > 0, then δ(P) < 1;

(iv) δ(PQ) ≤ δ(P)δ(Q) and |δ(P)− δ(Q)| ≤ ‖P−Q‖∞.

As it was shown at the end of Step-4, the square doubly stochastic matrix P
[
x(n+s),x(n)

]
is positive

and its entries are uniformly bounded away from zero for any n ∈ N. It is worthy noting that, by

using the same idea, we can also show that not only P
[
x(n+s),x(n)

]
but also P

[
y(s+1),y(1)

]
is positive and

its entries are uniformly bounded away from zero for all y(1) ≥ αe. Since δ(·) is continuous, we then
obtain that

λ := max
y(1)∈Sα

δ

(
P
[
y(s+1),y(1)

])
= δ

(
P
[
y(s+1)
∗ ,y(1)

∗

])
< 1

for some y
(1)
∗ ∈ Sα. Hence, for any n ≥ s+ 1, we have that

δ

(
P
[
x(n),x(1)

])
≤

b n
s+1 c∏
t=1

δ

(
P
[
xt(s+1),x(t−1)s+t

])
≤ λb n

s+1 c and lim
n→∞

δ
(
P
[
x(n),x(1)

])
= 0,

here f(t) = btc is a floor function. Therefore, due to Lemma 4.1, page 136, [23], the backwards
products (which are the transpose of forwards products) of doubly stochastic matrices

{
P(x(n))

}∞
n=1

are weakly ergodic (see Definition 4.5, page 136, [23]). Moreover, weak and strong ergodicity (see
Definitions 4.6, page 136, [23]) are equivalent for the backwards products of doubly stochastic matrices
(see Theorem 4.17, page 154, [23]). Due to the definition of strong ergodicity (see Definitions 4.6,

page 136, [23]), this means that the backwards products
{
P[x(n),x(1)]

}∞
n=1

of doubly stochastic matrices{
P(x(n))

}∞
n=1

must converge to the rank-1 doubly stochastic matrix. Since the only rank-1 doubly

stochastic matrix is mcTc, we obtain that

lim
n→∞

P[x(n),x(1)] = mcTc, lim
n→∞

x(n+1) = lim
n→∞

P[x(n),x(1)]x(1) = c, ∀ x(1) ∈ Sα,

where c = ( 1
m
, · · · , 1

m
)T . This completes the proof. �

Corollary 2.3. Let Pk+1 =
(
pi1···ikj

)m,··· ,m,m
i1,··· ,ik,j=1

be a (k + 1)−order m−dimensional doubly sto-

chastic hyper-matrix and P : Sm−1 → Sm−1 be a polynomial stochastic operator associated with
a (k + 1)−order m−dimensional doubly stochastic hyper-matrix Pk+1 =

(
pi1···ikj

)m,··· ,m,m
i1,··· ,ik,j=1

. If a

(k + 1)−order m−dimensional doubly stochastic hyper-matrix Pk+1 =
(
pi1···ikj

)m,··· ,m,m
i1,··· ,ik,j=1

is positive

(or only diagonally positive) then the trajectory {x(n)}∞n=1 starting from any initial point x(1) ∈ Sm−1

of the simplex Sm−1 converges to the center c = ( 1
m
, · · · , 1

m
)T of the simplex Sm−1.
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Example 2.4. Let a = (a1, a2, a3) ∈ S2 be a positive stochastic vector, i.e., a1, a2, a3 > 0 and
a1 + a2 + a3 = 1. Let e = (1, 1, 1). The following cubic stochastic operator Pa : S2 → S2 is globally
stable to the center c = ( 1

3
, 1

3
, 1

3
)T of the simplex where

Pa(x) = a
(
x3

1 + x3
2 + x3

3 + 6x1x2x3

)
+

3

2
(e− a)(x2

1x2 + x2
1x3 + x1x

2
2 + x1x

2
3 + x2

2x3 + x2x
2
3).

Example 2.5. Let a = (a1, · · · , am) ∈ Sm−1 be a positive stochastic vector, i.e., a1, · · · , am > 0
and a1 + · · · + am = 1. Let e = (1, · · · , 1) and m > 3. The following cubic stochastic operator
Pa : Sm−1 → Sm−1 is globally stable to the center c = ( 1

m
, · · · , 1

m
)T of the simplex where

Pa(x) = a
m∑
i=1

x3
i + 3

e− a

m− 1

∑
i<j

(x2
ixj + xix

2
j) + 6

(m− 3)e + 2a

(m− 1)(m− 2)

∑
i<j<k

xixjxk.
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Abstract.This paper constructs a discrete analogue of the second-order differential operator with
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direct and inverse Fourier transforms.
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1. Introduction

Discrete analogues of differential operators play a crucial role in the construction of optimal cuba-
ture, quadrature, interpolation, and finite-difference formulas in various functional spaces.

The discrete analogue of the polyharmonic operator was first studied by S.L.Sobolev [1].
Subsequently, the construction of discrete analogues of various differential operators and their ap-

plications have been considered in works [2, 3, 4, 5, 6, 7, 8, 9, 10].
It is not difficult to verify that the function

µ(x) =
e−|x|

4
(|x| − 1)

is the fundamental solution of the following differential operator L:

L ≡ d2

dx2
+ 2 signx

d

dx
+ 1,

i.e., it satisfies the equation

Lµ = δ,

where δ(x) is the Dirac delta-function.
In this work, we aim to construct a discrete analogue of the operator L.

Definition 1.1. The function ϕ(hβ) is a function of discrete argument if it is given on some set of
integer values of β.

This discrete operator Lh[β] is the solution of the equation

Lh[β] ∗ µh[β] = δ[β]. (1.1)

Here, convolution is defined as

Lh[β] ∗ µh[β] =
∞∑

γ=−∞

Lh[γ] · µh[β − γ],

µh[β] =
e−|hβ|

4
(|hβ| − 1), (1.2)

δ[β] is the discrete delta-function and it is equal to one when β = 0, and zero for all other integers of
β.
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2. Algorithm for constructing the discrete operator

To proceed, we use the concept of of harrow-shaped functions [1].
In the space of harrow-shaped functions, equation (1.1) takes the following form

↽⇁

L (x)∗
↽⇁
µ (x) =

↽⇁

δ (x). (2.1)

Here, these harrow-shaped functions are defined as follows:

↽⇁

L (x) =
∞∑

β=−∞

Lh[β]δ(x− hβ), (2.2)

↽⇁
µ (x) =

∞∑
β=−∞

µh[β]δ(x− hβ),
↽⇁

δ (x) =
∞∑

β=−∞

δ[β]δ(x− hβ) = δ(x).

It is known that there exists an isomorphism between the class of harrow-shaped functions and the
class of functions with discrete arguments [1].
To construct the discrete operatorLh[β], we apply the Fourier transform to both sides of equation
(2.1), consequently having

F
[↽⇁
L (x)∗

↽⇁
µ (x)

]
= F [δ(x)] . (2.3)

Using the known formulas
F [ψ(x) ∗ ϕ(x)] = F [ψ(x)] · F [ϕ(x)] ,

and
F [δ(x)] = 1,

equation (2.3) takes the following form

F
[↽⇁
L (x)

]
· F
[
↽⇁
µ (x)

]
= 1.

Hence, the Fourier transform of the harrow-shaped function F
[↽⇁
L (x)

]
is given by the equation

F
[↽⇁
L (x)

]
=

1

F
[
↽⇁
µ (x)

] . (2.4)

Applying the inverse Fourier transform to both sides of (2.4), we obtain

↽⇁

L (x) = F−1

 1

F
[
↽⇁
µ (x)

]
 . (2.5)

From this and equation (2.2), we derive the desired operator
↽⇁

Lh[β].
In the following sections, we implement the given algorithm.

3. Fourier transform of the harrow-shaped function
↽⇁
µ (x)

Now we calculate the Fourier transform of the function
↽⇁
µ (x).

By definition, the transform takes the form

F
[
↽⇁
µ (x)

]
= F

[
∞∑

β=−∞

µh[β]δ(x− hβ)

]
=

∞∑
β=−∞

µh[β]F [δ(x− hβ)] =
∞∑

β=−∞

µh[β] exp(2πiphβ).

Using expression (1.2), we obtain

F
[
↽⇁
µ (x)

]
=

∞∑
β=−∞

e−|hβ|

4
(|hβ| − 1) exp(2πiphβ). (3.1)
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Taking into account the evenness of the function µh[β], i.e., µh [β] = µh [−β] and denoting λ =
exp(2πiph) expression (3.1) takes the following form

F
[
↽⇁
µ (x)

]
=

∞∑
β=−∞

e−|hβ|

4
(|hβ| − 1)λβ =

∞∑
β=1

e−(hβ)

4
(hβ − 1)

(
λβ + λ−β

)
− 1

4
. (3.2)

From this, expanding the brackets, we obtain

F
[
↽⇁
µ (x)

]
= −1

4
− 1

4

∞∑
β=1

e−hβλβ − 1

4

∞∑
β=1

e−hβλ−β + +
h

4

∞∑
β=1

βe−hβλβ +
h

4

∞∑
β=1

βe−hβλ−β. (3.3)

Since |λ| = |exp(2πiph)| = 1, the series in (3.3) converges. To compute the series, we use the following
formulas

∞∑
β=1

(
e−hλ

)β
=

e−hλ

1− e−hλ
, (3.4)

∞∑
β=1

(
e−hλ−1

)β
=

e−hλ−1

1− e−hλ−1
=

1

ehλ − 1
, (3.5)

∞∑
β=1

hβ
(
e−hλ

)β
= h

e−hλ

(1− e−hλ)
2 , (3.6)

∞∑
β=1

hβ
(
e−hλ−1

)β
= h

ehλ

(ehλ − 1)
2 . (3.7)

Substituting expressions (3.4)-(3.7) into (3.3) after some simplifications, we obtain

F
[
↽⇁
µ (x)

]
= −1

4

[
1 +

e−hλ

1− e−hλ
+

e−hλ−1

1− e−hλ−1
− h e−hλ

(1− e−hλ)
2 − h

e−hλ−1

(1− e−hλ−1)
2

]

= −1

4

[
1 +

e−hλ

1− e−hλ
+

1

ehλ− 1
− h e−hλ

(1− e−hλ)
2 − h

ehλ

(ehλ− 1)
2

]

= −1

4

[
−λ2 + λ

(
eh + e−h

)
− 1 + λ2 − e−hλ+ 1− e−hλ

−λ2 + λ (eh + e−h)− 1

− h
[
e−hλ

(
ehλ− 1

)2
+ ehλ

(
1− e−hλ

)2
(−λ2 + λ (eh + e−h)− 1)

2

]]

= −1

4

[
λ
(
eh + e−h

)
−λ2 + λ (eh + e−h)− 1

− h
e−hλ

(
e2hλ2 − 2ehλ+ 1

)
+ ehλ

(
1− 2e−hλ+ e−2hλ2

)
(−λ2 + λ (eh + e−h)− 1)

2

]

= −1

4

[
λ
(
eh + e−h

)
−λ2 + λ (eh + e−h)− 1

− he
hλ3 − 2λ2 + e−hλ+ ehλ− 2λ2 + e−hλ3

(−λ2 + λ (eh + e−h)− 1)
2

]

= −1

4

[
λ
(
eh + e−h

) (
−λ2 + λ

(
eh + e−h

)
− 1
)

(−λ2 + λ (eh + e−h)− 1)
2 −

h
[(
eh + e−h

)
λ3 − 4λ2 +

(
eh + e−h

)
λ
]

(−λ2 + λ (eh + e−h)− 1)
2

]

= −λ
4
· 2 sinh(h) [−λ2 + 2 cosh(h)λ− 1]− h [2 cosh(h)λ2 − 4λ+ 2 cosh(h)]

(λ2 − 2 cosh(h)λ+ 1)
2

= −λ
4
·
[
λ2 [−2 sinh(h)− 2h cosh(h)] + λ [4h+ 4 cosh(h) sh(h)]

(λ2 − 2 cosh(h)λ+ 1)
2 +

[−2h cosh(h)− 2 sinh(h)]

(λ2 − 2 cosh(h)λ+ 1)
2

]

=
λ

2
· λ

2 [h cosh(h) + sinh(h)]− 2λ [h+ cosh(h) sinh(h)] + h cosh(h) + sinh(h)

(λ2 − 2 cosh(h)λ+ 1)
2 .
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Thus, we have ultimately obtained the expression for the Fourier transform of the harrow-shaped

function
↽⇁
µ (x):

F
[
↽⇁
µ (x)

]
=

λ

2
·
[
λ2 [h cosh(h) + sinh(h)]− 2λ [h+ cosh(h) sinh(h)]

(λ2 − 2 cosh(h)λ+ 1)
2 +

h cosh(h) + sinh(h)

(λ2 − 2 cosh(h)λ+ 1)
2

]
.

Let us denote a1 = h cosh(h) + sinh(h), a2 = h + cosh(h) sinh(h), then F
[
↽⇁
µ (x)

]
can be written in

the following form

F
[
↽⇁
µ (x)

]
=
λ

2
· a1λ

2 − 2a2λ+ a1

(λ2 − 2 cosh(h)λ+ 1)
2 .

4. The discrete operator Lh[β]

We now compute

1

F
[
↽⇁
µ (x)

] =
2(λ2 − 2 cosh(h)λ+ 1)

2

λ (a1λ2 − 2a2λ+ a1)
=

=
2
(
λ4 − 4 cosh(h)λ3 + 2λ2 + 4cosh2(h)λ2 − 4 cosh(h)λ+ 1

)
a1λ3 − 2a2λ+ a1λ

(4.1)

Thus,
2(λ2 − 2 cosh(h)λ+ 1)

2

λ (a1λ2 − 2a2λ+ a1)
=

2

a1

λ+
4

a1
2

(
a2 − 2a1

2 cosh(h)
)

+
R2(λ)

a1λ3 − 2a2λ2 + a1λ
, (4.2)

where

R2(λ) =

[
2 +

8

a1
2

(
a1

2cosh2(h) + a2
2 − 2a2a1 cosh(h)

)]
λ2− 4

a1

(2a1 cosh(h) + a2 − 2a1 cosh(h))λ+2

=

[
2 +

8

a1
2
(a1 cosh(h)− a2)

2

]
λ2 − 4

a2

a1

λ+ 2 =

[
2 + 8

(
cosh(h)− a2

a1

)2
]
λ2 − 4

a2

a1

λ+ 2. (4.3)

Next, we decompose R2(λ)

λ(a1λ2−2a2λ+a1)
into elementary fractions. For this, we obtain

R2(λ)

λ (a1λ2 − 2a2λ+ a1)
=
B0

λ
+

B1,1

λ− λ1

+
B1,2

λ− λ2

. (4.4)

Here, λ1 and λ2 are roots of the polynomial a1λ
2 − 2a2λ+ a1.

Using (4.4), expression (4.2) becomes

2(λ2 − 2 cosh(h)λ+ 1)
2

λ (a1λ2 − 2a2λ+ a1)
=

2

a1

λ+
4

a1
2

(
a2 − 2a1

2 cosh(h)
)

+
B0

λ
+

B1,1

λ− λ1

+
B1,2

λ− λ2

.

Hence, we have

2
(
λ22 cosh(h)λ+ 1

)2
=

2

a1

λ2
(
a1λ

2 − 2a2λ+ a1

)
+

4

a1
2

(a2 − 2a1 cosh(h))λ
(
a1λ

2 − 2a2λ+ a1

)
+B0

(
a1λ

2 − 2a2λ+ a1

)
+
B1,1λa1 (λ− λ1) (λ− λ2)

λ− λ1

+
B1,2λa1 (λ− λ1) (λ− λ2)

λ− λ2

.

Hence, by substituting λ = 0, λ = λ1, λ = λ2 we obtain 2 = B0a1, or

B0 =
2

a1

, (4.5)
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2
(
λ1

2 − 2 cosh(h)λ1 + 1
)2

= B1,1λ1a1 (λ1 − λ2) ,

2
(
λ2

2 − 2 cosh(h)λ2 + 1
)2

= B2,2λ2a1 (λ2 − λ1) ,

B1,1 =
2
(
λ1

2 − 2 cosh(h)λ1 + 1
)2

λ1a1 (λ1 − λ2)
, (4.6)

B1,2 =
2
(
λ2

2 − 2 cosh(h)λ2 + 1
)2

λ2a1 (λ2 − λ1)
. (4.7)

Considering λ1 = 1
λ2

, we obtain

λ2
2 − 2 cosh(h)λ2 + 1 =

1

λ1
2 − 2 cosh(h)

1

λ1

+ 1 =
λ1

2 − 2 cosh(h)λ1 + 1

λ1
2 ,

B1,2 =
2
(
λ2

2 − 2 cosh(h)λ2 + 1
)2

λ2a1 (λ2 − λ1)
=

2
(
λ1

2 − 2 cosh(h)λ1 + 1
)2

λ1
4λ2a1 (λ2 − λ1)

=
2
(
λ1

2 − 2 cosh(h)λ1 + 1
)2

λ1
4 1
λ1
a1 (λ2 − λ1)

=
2
(
λ1

2 − 2 cosh(h)λ1 + 1
)2

λ1
3a1 (λ2 − λ1)

=
2
(
λ1

2 − 2 cosh(h)λ1 + 1
)2

λ1
2λ1a1 (λ2 − λ1)

= −B1,1

λ1
2 .

Hence

B1,2 =
−B1,1

λ2
1

. (4.8)

Then we have B1,1 = −B1,2λ
2
1 = −B1,2

λ2
2

and B1,1 = −B1,2

λ2
2
. Let 0 < λ1 < 1, λ2 > 1, then in the

expression
R2(λ)

λ (a1λ2 − 2a2λ+ 1)
=
B0

λ
+

B1,1

λ− λ1

+
B1,2

λ− λ2

,

the second and third terms can be rewritten as

B1,1

λ− λ1

=
1

λ
· B1,1

1− λ1

λ

=
1

λ
B1,1

∞∑
β=0

(
λ1

λ

)β
, (4.9)

B1,2

λ− λ2

= − B1,2

λ2

(
1− λ

λ2

) = −B1,2

λ2

∞∑
β=0

(
λ

λ2

)β
. (4.10)

From (4.1), (4.2), and (4.4), we have

1

F
[
↽⇁
µ (x)

] =
2

a1

λ+
4

a2
1

(
a2 − 2a2

1 cosh(h)
)

+
B0

λ
+

B1,1

λ− λ1

+
B1,2

λ− λ2

. (4.11)

Here, the coefficients were determined in (4.5)-(4.7). From (4.9) and (4.10), expression (4.11)
becomes

1

F
[
↽⇁
µ (x)

] =
2

a1

λ +
4

a2
1

(
a2 − 2a2

1 cosh(h)
)

+
B0

λ
+

1

λ
B1,1

∞∑
β=0

(
λ1

λ

)β
− B1,2

λ2

∞∑
β=0

(
λ

λ2

)β
.

From this, using formula (4.8), we obtain

1

F
[
↽⇁
µ (x)

] =
2

a1

λ+
4

a2
1

(
a2 − 2a2

1 cosh(h)
)
− B0

λ
+

1

λ
B1,1

∞∑
β=0

(
λ1

λ

)β
+
B1,1

λ2
1λ2

∞∑
β=0

(
λ

λ2

)β

=
2

a1

λ+
4

a2
1

(
a2 − 2a2

1 cosh(h)
)

+
B0

λ
+
B1,1

λ

∞∑
β=0

(
λ1

λ

)β
+
B1,1

λ1

∞∑
β=0

(
λ

λ2

)β
. (4.12)
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Now, substituting into (4.12) the value of exp(2πiph) in place of λ, we obtain

1

F
[
↽⇁
µ (x)

] =
2

a1

exp(2πiph) +
4

a2
1

(
a2 − 2a2

1 cosh(h)
)

+B0 exp(−2πiph)

+
B1,1

λ1

∞∑
β=0

(
λ1

exp(2πiph)

)β+1

+
B1,1

λ1

∞∑
β=0

(λ1 exp(2πiph))
β

=
2

a1

exp(2πiph)

+
4

a2
1

(
a2 − 2a2

1 cosh(h)
)

+
B1,1

λ1

∞∑
β=0

λβ+1
1 (exp(−2πiph))

β+1

+
B1,1

λ1

∞∑
β=0

λβ1 (exp(2πiph))
β
. (4.13)

Expression (4.13) can be written as

1

F
[
↽⇁
µ (x)

] =
∞∑
β=0

Dh [β] exp(2πiphβ).

Here,

Dh[0] =
4

a2
1

(
a2 − 2a2

1 cosh(h)
)

+
B1,1

λ1

,

Dh[−1] = B0 +
B1,1λ1

λ1

,

Dh[1] =
2

a1

+
B1,1

λ1

λ1,

Dh[β] =
B1,1

λ1

λ
|β|
1 , |β| ≥ 2,

from (2.4) and (2.5), it follows that

F
[↽⇁
L (x)

]
=

∞∑
β=−∞

Dh [β] exp(2πiphβ).

From this and from equations (2.4) and (2.5), it follows that the desired operator Lh [β] is equal to
Dh[β], .. Lh [β] = Dh [β] and it has the form

Lh[0] =
4a2

a2
1

− 8 cosh(h) +
B1,1

λ1

, (4.14)

Lh[1] = Lh[−1] =
2

a1

+B1,1, (4.15)

Lh[β] = B1,1λ
|β|−1
1 , |β| ≥ 2. (4.16)

Here,
a1 = h cosh(h) + sinh(h),

a2 = h+ cosh(h) sinh(h),

B1,1 =
2(λ2

1 − 2 cosh(h) + 1)
2

a1λ1(λ1 − λ2)
,

λ1 =

h+ sinh(h)

(
cosh(h)−

√
sinh2(h)− h2

)
h cosh(h)− sinh(h)

.

Thus, we have proven the following theorem.
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Theorem 4.1. The discrete analogue Lh[β] of the second-order differential operator

L =
d2

dx2
+ 2signx

d

dx
+ 1

is defined by formulas (4.14)-(4.16).

5. Conclusion

In this paper, using functions of a discrete argument and harrow-shaped functions, a discrete ana-
logue of the second-order differential operator with a variable coefficient has been constructed.
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The Dirichlet problem in the class of m-convex functions
Sharipov R.A.

Abstract. The well-known classical Dirichlet problem states that if D ⊂ Rn is a regular domain,
then for any continuous function ϕ(ξ) ∈ C(∂D), there exists a unique harmonic function ω(x) ∈ C(D),
such that ω|∂D = ϕ. In the work of Sadullaev-Sharipov [24], under an additional condition of strict
m-convexity of the domain D ⊂ Rn, an analogous result for m-convex (m − cv) functions has been
proven.

In this paper, a stronger result on the existence of the solution to the Dirichlet problem in regular
domains D ⊂ Rn is proved under one necessary condition on the boundary function ϕ(ξ).

Keywords: strongly m-subharmonic functions, m-convex functions, Borel measures, Hessians,
Dirichlet problem

MSC (2020): 26B25, 39B62, 52A41

1. Classical Dirichlet problem

Let a bounded domain D ⊂ Rn and a function ϕ(ξ) ∈ C(∂D) be given. The classical Dirichlet
problem claims that there exists a function ω(x) ∈ h(D) ∩ C(D) such that ω|∂D = ϕ. It immediately
follows from the maximum principle for harmonic functions that, if a solution to the Dirichlet problem
exists, then it is unique.

To solve the Dirichlet problem in the domain D ⊂ Rn, we use the well-known Perron method. We
consider it as a very convenient tool in potential theory and in the theory of harmonic functions.
Moreover, it may be useful in other boundary problems of elliptic equations. For a given function
ϕ(ξ) ∈ C(∂D), we set

U(ϕ,D) =

{
u ∈ sh(D) : lim

x→ξ∈D
u(x) ≤ ϕ(ξ)

}
, ω(x) = sup

u∈U(ϕ,D)

u(x).

Here, h(D) class refers to the class of harmonic functions in D, for which the Laplace equation holds:
∆u = 0. The sh(D) class refers to the class of subharmonic functions in D, for which the inequality
holds: ∆u ≥ 0.

To ensure that the extremal function ω(x) is a solution to the Dirichlet problem ω(x) ∈ h(D)∩C(D)
with ω|∂D = ϕ in the domain D ⊂ Rn, an additional condition requiring the existence of a barrier is
imposed (see [6]).

Definition 1.1. We say that the domain D ⊂ Rn has a barrier at the point ξ ∈ ∂D, if there exists a
function b(x) ∈ sh(D) ∩ C(D) such that:

1) b(ξ) = 0,
2) sup
|x−ξ|≥ε, x∈D̄

b(x) < 0 for any ε > 0.

In this case, the function b(x) is called a barrier at the point ξ ∈ ∂D. Note that if any Dirichlet
problem is solvable in the domain D ⊂ Rn, then the domain D ⊂ Rn has a barrier at any point ξ ∈ ∂D.

Theorem 1.2. If a bounded domain D ⊂ Rn has a barrier at all boundary points ξ ∈ ∂D, then the
Dirichlet problem for the Laplace equation

∆ω = 0, ω|∂D = ϕ, ϕ(ξ) ∈ C(∂D)

always (for any function ϕ(ξ) ∈ C(∂D)) has a solution ω ∈ h(D)∩C(D), and this solution is unique.

Definition 1.3. A bounded domain D ⊂ Rn is called a regular domain, if there exists a strictly
negative function ρ(x) ∈ sh(D) such that ρ(x) < 0, lim

x→∂D
ρ(x) = 0. The latter condition means that

for any number c < 0, the set {x ∈ D : ρ(x) < c} is a compact subset in D.
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Theorem 1.4. (Regularity Criterion). The following conditions are equivalent:
1) D has a barrier at every point ξ ∈ ∂D;
2) D ⊂ Rn is regular domain.

2. m-convex functions

The Potential theory in the class of strongly m-subharmonic functions is based on differential forms
and currents (ddcu)k∧βn−k ≥ 0, k = 1, 2, . . . , n−m+1, where β = ddc‖z‖2 is the standard volume form
in Cn. Then the potential theory in the class of m-convex (m− cv) functions, in particular, maximal
m − cv functions and the Dirichlet problem, are related to Hessians Hk(u), k = 1, 2, ..., n −m + 1.
The main method for studying maximal m-convex functions, which, in general, are not smooth, is to
connect m− cv functions with strongly m-subharmonic (shm) functions (see [9], [28]). The theory of
shm functions is well-studied and is currently the subject of research by many mathematicians (see
Z.B locki [9], [8], S.Dinew and S.Kolodziej [14], S. Li [16], H.C. Lu [17], [18], H. Bremermann [7],
A.Sadullaev, B.Abdullaev [20], [1]).

We recall that a twice smooth function u(z) ∈ C2(D), D ⊂ Cn, is called strongly m-subharmonic,
u ∈ shm(D), if at each point of the domain D the followings holds:

shm(D) =
{
u ∈ C2 : (ddcu)k ∧ βn−k ≥ 0, k = 1, 2, . . . , n−m+ 1

}
=

=
{
u ∈ C2 : ddcu ∧ βn−1 ≥ 0, (ddcu)2 ∧ βn−2 ≥ 0, . . . , (ddcu)n−m+1 ∧ βm−1 ≥ 0

}
, (2.1)

where β = ddc‖z‖2 is the standard volume form in Cn.
Operators (ddcu)k∧βn−k are closely related to the Hessians. For a twice continuously differentiable

function u ∈ C2(D), the second-order differential ddcu = i
2

∑
j,k

∂2u
∂zj∂ z̄k

dzj ∧ d z̄k (at the fixed point

o ∈ D) is a Hermitian quadratic form. After a unitary transformation of coordinates, this form can
be reduced to the diagonal form ddcu = i

2
[λ1dz1 ∧ dz1 + . . .+ λndzn ∧ dzn] , where λ1, . . . , λn are the

eigenvalues of the Hermitian matrix
(

∂2u
∂zj∂ z̄k

)
, which are real: λ = (λ1, . . . , λn) ∈ Rn. Note that, the

unitary transformation does not change the differential form β = ddc‖z‖2. It is easy to see that

(ddcu)k ∧ βn−k = k!(n− k)!Hk(u)βn, (2.2)

where Hk(u) =
∑

1≤j1<...<jk≤n
λj1 ...λjk is the Hessian of dimension k of the vector λ = λ(u) ∈ Rn.

Consequently, a function u(z) ∈ C2(D), D ⊂ Cn, is strongly m-subharmonic if at each point o ∈ D,
the following inequalities hold:

Hk(u) = Hk
0 (u) ≥ 0, k = 1, 2, ..., n−m+ 1. (2.3)

Note that the concept of a strongly m-subharmonic function is defined, in general, in the distribution
sense

Definition 2.1. A function u ∈ L1
loc(D) is called shm in the domain D ⊂ Cn, if it is upper semicon-

tinuous and for any twice continuously differentiable function shm functions v1, . . . , vn−m, the current
ddcu ∧ ddcv1 ∧ · · · ∧ ddcvn−m ∧ βm−1 defined as[

ddcu ∧ ddcv1 ∧ · · · ∧ ddcvn−m ∧ βm−1
]

(ω) =

=

∫
uddcv1 ∧ · · · ∧ ddcvn−m ∧ βm−1 ∧ ddcω, ω ∈ F 0,0 (2.4)

is positive, ∫
uddcv1 ∧ · · · ∧ ddcvn−m ∧ βm−1 ∧ ddcω ≥ 0, ∀ω ∈ F 0,0, ω ≥ 0.
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In the work of B locki [8], it was proven that this definition is correct, in the sense that, for functions
u ∈ C2(D), this definition coincides with the original definition of shm. Moreover, the operators
(ddcu)k ∧ βn−k ≥ 0, for k = 1, 2, ..., n −m + 1 are defined in the class of bounded shm functions as
Borel measures in the domain D (see [20], [8]).

Let now D ⊂ Rn and u(x) ∈ C2(D). Similar to (2.1), we want to define m − cv functions in the

domain D ⊂ Rn. The matrix
(

∂2u
∂xj∂xk

)
is symmetric, ∂2u

∂xk∂xj
= ∂2u

∂xj∂xk
. Therefore, after a suitable

orthonormal transformation, it is transformed into a diagonal form

(
∂2u

∂xj∂xk

)
→


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn

 ,

where λj = λj(x) ∈ R are the eigenvalues of the matrix
(

∂2u
∂xj∂xk

)
. Let

Hk(u) = Hk(λ) =
∑

1≤j1<···<jk≤n

λj1 ...λjk

be the Hessian of dimension k of the λ = (λ1, λ2, . . . , λn).

Definition 2.2. A function u ∈ C2(D) is called m-convex in D ⊂ Rn, u ∈ m − cv(D), if its λ =
λ(x) = (λ1(x), λ2(x), . . . , λn(x)) satisfies the conditions

Hk(u) = Hk(λ(x)) ≥ 0, ∀x ∈ D, k = 1, ..., n−m+ 1.

When m = n, the class n − cv ∩ C2(D) = {λ1 + λ2 + . . . + λn ≥ 0} coincides with the class of
subharmonic functions, and when m = 1, this class 1 − cv ∩ C2(D) = {λ1 ≥ 0, λ2 ≥ 0, . . . , λn ≥
0} coincides with functions that are convex in Rn. The class of convex functions is well studied
(A. Alexandrov, I. Bakelman, A.Pogorelov, see [2, 3, 4, 5, 19]). For m > 1, the class m-convex
functions has been studied in series of works by N. Ivochkina, N. Trudinger, X. Wang, etc. (see
[12, 13, 15, 27, 28, 29, 30]).

The key point in studying m−cv∩L1
loc functions is the relationship between m−cv and shm functions

(see for instanse [8, 12, 25], [26]). We embed Rnx into Cnz by Rnx ⊂ Cnz = Rnx + iRny (z = x + iy), as a
real n−dimensional subspace of the complex space Cn.

Theorem 2.3. A function u(x) ∈ C2(D), D ⊂ Rn, is m-convex in D, if and only if a function
uc(z) = uc(x+ iy) = u(x) does not depend on variables y ∈ Rny and is shm in the domain D × iRny .

Definition 2.4. An upper semicontinuous function u(x) in a domain D ⊂ Rnx is called m-convex in
D, if the function uc(z) is strongly m-subharmonic, uc(z) ∈ shm(D × iRny ).

We can now define Hessians Hk, for k = 1, 2, ..., n−m+1, in the class of locally bounded, m-convex
functions in the domain D ⊂ Rnx. Let u(x) be a locally bounded, m-convex function in the domain
D ⊂ Rnx. According to definition 2.4 we constract uc(z) ∈ shm(D × iRny ) and define Borel measures
µk in the domain D × iRny ⊂ Cnz :

µk = (ddcuc)k ∧ βn−k, k = 1, 2, . . . , n−m+ 1.

Since uc ∈ shm
(
D × iRny

)
does not depend on y ∈ Rny , then for any Borel sets Ex ⊂ D and Ey ⊂⊂ Rny ,

the measures 1
mesEy

µk (Ex × Ey) do not depend on the set Ey ⊂⊂ Rny , i.e., 1
mesEy

µk (Ex × Ey) =

νk (Ex) . Borel measures are defined as

νk : νk (Ex) =
1

mesEy
µk (Ex × Ey) , k = 1, 2, . . . , n−m+ 1, (2.5)

where we call by Hk = Hk (Ex), for k = 1, 2, . . . , n−m+1, as Hessians for a locally bounded, m-convex
function u(x) ∈ m−cv(D). For a twice continuously differentiable function, u(x) ∈ m−cv(D)∩C2(D),
the Hessians are ordinary functions. However, for a non-twice continuously differentiable function
but bounded upper semicontinuous function u(x) ∈ m − cv(D) ∩ L∞(D), the Hessians Hk, k =
1, 2, ..., n−m+ 1, are positive Borel measures (see [23]).
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3. Maximal functions and the Dirichlet problem

Definition 3.1. A function u(x) ∈ m − cv(D) is called maximal in the domain D ⊂ Rn if for
this function the maximum principle holds in the class of m − cv(D), i.e., if v ∈ m − cv(D) and
lim
x→∂D

(u(x)− v(x)), then u(x) ≥ v(x), ∀x ∈ D.

Below we will use the following more convenient criterion of maximality: a function u(x) ∈ m−cv(D)
is maximal in the domain D ⊂ Rn if and only if for any domain G ⊂⊂ D the inequality u(x) ≥
v(x), ∀x ∈ G holds for all functions v ∈ m− cv(D) : u|∂G ≥ v|∂G (see [24]).

Maximal functions are closely related to the Dirichlet problem.

Theorem 3.2. (see [24]). Let D = {ρ(x) < 0} be a strictly m− cv convex domain in Rn and ϕ(ξ) be
a continuous function defined on the boundary ∂D. Put

U(ϕ,D) = {u ∈ m− cv(D) ∩ C(D) : u|∂D ≤ ϕ}

and
ω(x) = sup{u(x) : u ∈ U(ϕ,D)}. (3.1)

Then, ω(x) ∈ m− cv(D) ∩ C(D), ω|∂D = ϕ and in addition, ω(x) is the maximal m− cv function in
D, i.e. Hn−m+1(ω(x)) = 0.

We recall that, the domain D = {ρ(x) < 0} is called strictly m− cv, if the function ρ(x) is strictly
m − cv in a neighborhood D+ ⊃ D, ρ(x) ∈ m − cv(D+). Moreover ρ(x) − δ|x|2 ∈ m − cv(D+) for
some δ > 0. We note, that the ball B (0, r) = {x ∈ Rn : |x| < r} is strictly m − cv domain, but the
parallelepiped Π = {x = (x1, x2, ..., xn) ∈ Rn : |x1| < 1, |x2| < 1, ..., |xn| < 1} is not strictly m− cv in
Rn, although Π is a regular domain in the sense of classical potential theory.

It is natural to call the function ω(x) as a solution to the Dirichlet problem that is ω(x) is maximal
and ω|∂D = ϕ. For regularization ω∗ which is m− cv function in the domain D condition of continuity
on the boundary is also satisfied: lim

x→ξ
ω∗(x) = ϕ(ξ), ∀ξ ∈ ∂D. From ω∗(x) ∈ m−cv(D), lim

x→∂D
ω∗ = ϕ

follows that ω∗(x) ≤ ω(x), i.e. ω∗(x) ≡ ω(x) and ω(x) is m − cv function. Let us show that
ω∗(x) ≡ ω(x) is maximal.

Assume the contrary, let there be a domain G ⊂⊂ D and a function φ(x) ∈ m − cv(D) : φ|∂G ≤
ω|∂G, but φ(x0) > ω(x0) at some point x0.

Function

w(x) =

{
max {ω(x), φ(x)} , if x ∈ G
ω(x) , if x ∈ D\G

is m-convex, w(x) ∈ m− cv(D), w|∂D = ω|∂D = ϕ. Therefore, w(x) ≤ ω(x) and φ(x0) ≤ ω(x0). This
is contradiction.

4. The Dirichlet problem for non strictly m− cv regular domain D ⊂ Rn

As we saw in Section 3, some condition is imposed on the domain D ⊂ Rn for the existence of a
solution to the Dirichlet problem, which is related to its strictly m-convexity.

Let’s provide an example where the domain D ⊂ Rn is simply m-convex or regular in the sense
of classical potential theory, and Theorem 3.2 does not hold. First, let us note that if the Dirichlet
problem is solvable in the domain D ⊂ Rn, then

Hn−m+1(ω(x)) = 0, ω(x) ∈ m− cv(D) ∩ C(D), ω|∂D = ϕ, ϕ(ξ) ∈ C(∂D),

the given boundary function ϕ(ξ) necessarily continues inside D as m-convex function. However, not
every function defined on the boundary ∂D can be m- convexly continued inside D.

Example 4.1. n = 2, m = 1. Let D = l2 = {|x1| < 1, |x2| < 1} be a square. Then the class 1 − cv
coincides with the class of convex functions. For any convex function ω(x) ∈ 1 − cv(l2) ∩ C(l2), its
boundary values ω∗(ξ) consist of two convex functions ω∗(ξ1, 0) and ω∗(0, ξ2). Thus, if the given
boundary function ϕ(ξ) is not convex on the interval {|ξ1| < 1, ξ2 = 0} or {ξ1 = 0, |ξ2| < 1}, then such
a function cannot be continued in D = l2 as an 1 − cv (convex) function. For example, the function
ϕ(ξ1, 0) = −ξ2

1 is not convex on the interval (−1,+1).
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Nevertheless, it is true

Theorem 4.2. Let D ⊂ Rn be a regular domain in the sense of classical potential theory, and let ϕ ∈
C(∂D) be a function such that it is the trace of some function w ∈ m−cv(D) with lim

x→ξ
w(x) = ϕ(ξ) for

ξ ∈ ∂D. Then, the function ω(x) is maximal function in D ⊂ Rn. Moreover, ω ∈ m−cv(D)∩C(D) and
ω|∂D = ϕ. This function is called the solution to the Dirichlet problem: Hn−m+1 (ω(x)) = 0, ω|∂D = ϕ.

We note that if in Theorem 3.2 the condition for the existence of a solution to the Dirichlet problem
pertains to the domain D ⊂ Rn, in this theorem the condition is imposed on the boundary function
ϕ ∈ C(∂D).

Proof. (Proof of Theorem 4.2) According to the property of m− cv functions for the envelope:

ω(x) = sup
{
u(x) ∈ m− cv(D) ∩ C(D) : u|∂D ≤ ϕ

}
,

the regularization ω∗(x) will also be an m− cv function.
Along with the family

{
u(x) ∈ m− cv(D) ∩ C(D), u|∂D ≤ ϕ

}
we also take the family{

v(x) ∈ sh(D) ∩ C(D), v|∂D ≤ ϕ
}
, which is involved in solving the classical Dirichlet problem. Since

any m-convex function is subharmonic, we have:{
u(x) ∈ m− cv(D) ∩ C(D), u|∂D ≤ ϕ

}
⊂
{
v(x) ∈ sh(D) ∩ C(D), v|∂D ≤ ϕ

}
. (4.1)

Since D is a regular domain in the sense of classical potential theory, the function

q(x) = sup
{
v(x) ∈ sh(D) ∩ C(D), v|∂D ≤ ϕ

}
represents a harmonic function in D, q(x) ∈ h(D) ∩ C(D) and q|∂D = ϕ. Furthermore, from (4.1), it
follows that:

ω(x) = sup
{
u(x) ∈ m− cv(D) ∩ C(D) : u|∂D ≤ ϕ

}
≤ q(x).

From this, we get
lim
x→ξ

ω(x) ≤ lim
x→ξ

q(x) = ϕ(ξ), ξ ∈ ∂D. (4.2)

To prove the reverse inequality, we use the function w ∈ m− cv(D) with lim
x→ξ

w(x) = ϕ(ξ), ξ ∈ ∂D.

From the definition of the class U(ϕ,D), it is clear that w ∈ U(ϕ,D). Thus w(x) ≤ ω(x), i.e.,
lim
x→ξ

ω(x) ≥ lim
x→ξ

w(x) = ϕ(ξ), ξ ∈ ∂D, and this together with (4.2) gives us lim
x→ξ

ω∗(x) = ϕ(ξ), ξ ∈ ∂D.

From the proof, it follows that ω∗ ∈ U(ϕ,D) and, consequently, ω∗ = ω. We prove, that the
solution ω∗ = ω is maximal. Regularization ω∗ is m − cv function in the domain D, for which the
continuity condition on the boundary is satisfied: lim

x→ξ
ω∗(x) = ϕ(ξ), ∀ξ ∈ ∂D. It follows from

ω∗(x) ∈ m− cv(D), lim
x→∂D

ω∗ = ϕ, that ω∗(x) ≤ ω(x), i.e. ω∗(x) ≡ ω(x) and ω(x) is m− cv function.

Let us show that it is maximal.
By contradiction, let there exist a domain G ⊂⊂ D and a function φ(x) ∈ m−cv(D) : φ|∂G ≤ ω|∂G,

but φ(x0) > ω(x0) at some point x0 ∈ G.
The function

g(x) =

{
max {ω(x), φ(x)} if x ∈ Ḡ
ω(x) if x ∈ D\G

is m-convex, g(x) ∈ m − cv(D), g|∂D = ω|∂D = ϕ. Therefore, g(x) ≤ ω(x) and φ(x0) ≤ ω(x0).
Contradiction.

Now we can prove, that ω is continuous in D. Let’s build an approximation ωδ(x) = ω ◦
Kδ(x − y) ∈ m − cv(Dδ) ∩ C∞(Dδ), Dδ = {x ∈ D : ρ(x) < δ} , ωδ(x) ↓ ω(x), as δ ↓ 0, where
Dδ = {x ∈ D : dist (x, ∂D) > δ} . For small enough δ > 0 each interior normal nξ, ξ ∈ ∂D inter-
sects ∂Dδ at a single point η(ξ) ∈ ∂Dδ, so that a homeomorphism nδ is defined nδ : ∂D → ∂Dδ. Let
us put ϕδ(η) = ϕ(nδ(ξ)),η ∈ ∂Dδ, ξ ∈ D. Since lim

x→ξ
ω(x) = ϕ(ξ), ∀ξ ∈ ∂D, then for any fixed ε > 0

there is a δ0 > 0 such that |ω(x)− ϕδ0(x)| < ε, ∀x ∈ ∂Dδ0 . For a fixed δ0 > 0 the domain Dδ0 ⊂⊂ D
and the approximation ωδ(x) ↓ ω(x), for δ ↓ 0 covers the domain Dδ0 .
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Applying Hartogs’ lemma to a compact set ∂Dδ0 and a function ϕδ0(x) ∈ C(∂Dδ0) we find 0 < δ′ < δ0

such that
ωδ(x) < ωδ0(x) + 3ε, ∀x ∈ ∂Dδ0 , δ < δ′. (4.3)

Since the solution to the Dirichlet problem ω(x) is maximal in D, from ωδ(x) < ϕδ0(x) + 3ε, ∀x ∈
∂Dδ0 , δ < δ′ follows that ωδ(x) < ω(x) + 4ε, ∀x ∈ Dδ0 , δ < δ′ because ω(x) > ϕδ0(x)− 3ε, ∀x ∈ ∂Dδ0 .
From here, ω(x) < ωδ(x) < ω(x) + 4ε, ∀x ∈ ∂Dδ0 , δ < δ′, i.e. |ωδ(x)− ω(x)| < 4ε, ∀x ∈ Dδ0 , δ <
δ′(δ0). Since ε > 0 arbitrary, then the convergence ωδ(x) ↓ ω(x) will be uniform inside D and ω(x) ∈
C(D), because ωδ(x) ∈ C∞(Dδ).

It remains to prove that, Hn−m+1(ω(x)) = 0. This statement is directly followed by the following
theorem

Theorem 4.3. (see. [24]). A continuous m − cv function u(x) ∈ m − cv(D) ∩ C(D) is maximal if
and only if the Borel measure is Hn−m+1 (u) = 0.

�

Given the importance and need for work, we will formulate the following comparison principle

Theorem 4.4. (Comparison principle), (see. [24]). Let u(x), v(x) ∈ m − cv (D) ∩ C (D) and F =
{u(x) < v(x)} ⊂⊂ D be open set. Then∫

F

Hn−m+1 (u) ≥
∫
F

Hn−m+1 (v) . (4.4)

The following maximum principle in a class of m− cv functions can be found in the work [16].

Theorem 4.5. Let u(x), v(x) ∈ m − cv (D) ∩ C2
(
D̄
)

: Hn−m+1 (u) ≤ Hn−m+1 (v) , x ∈ D. Then, if
u|∂D ≥ v|∂D , then u (x) ≥ v (x) ∀x ∈ D.

Proof. (Proof of theorem 4.3) Let u(x) ∈ m − cv (D) ∩ C (D) is maximal. Let’s take a ball B ⊂⊂ D
and consider the Dirichlet problem in Hessians:

Hn−m+1 (u) = ψ (x) , u (x) ∈ m− cv,
u|∂B = ϕ,

(4.5)

where ψ(x) ∈ C
(
B̄
)
, ψ (x) ≥ 0, ϕ (ξ) ∈ C (∂B) .

Many works are devoted to solutions of the Dirichlet problem (4.5). Thus, in the non-degenerate
smooth case ψ(x) ∈ C∞

(
B̄
)
, ψ (x) > 0, ϕ (ξ) ∈ C∞ (∂B), equation (4.5) has a unique solution

u(x) ∈ m− cv (B) ∩ C∞
(
B̄
)
, u|∂B = ϕ (see. [10]-[12], [16]).

For the degenerate case, to solve the equation

Hn−m+1 (u) = 0, u (x) ∈ m− cv,
u|∂B = ϕ, ϕ (ξ) ∈ C (∂D)

we will use above statement. Fix a ball B ⊂⊂ D. We approximate the function ϕ (ξ) by infinitely
smooth functions: ϕj (ξ) ↓ ϕ (ξ) , ϕj (ξ) ∈ C∞ (∂B) . According to the above equation

Hn−m+1 (u) = 1
j
, u (x) ∈ m− cv,

u|∂B = ϕj

has a unique solution uj (x) ∈ m − cv (B) ∩ C∞
(
B̄
)
, uj|∂B = ϕj. According to Theorem 4.5 the

sequence uj (x) is decreasing, uj (x) ≥ uj+1 (x) . Due to the Hessian property, the Hessian sequence
Hn−m+1 (uj (x)) weakly converges: Hn−m+1 (uj (x)) 7→ Hn−m+1 (u (x)) . Since Hn−m+1 (uj (x)) = 1

j
,

then Borel measure Hn−m+1 (u) = 0 in B ⊂⊂ D and since the ball B ⊂⊂ D is arbitrary, then
Hn−m+1 (u) = 0 in D.

Vice versa, let u (x) ∈ m− cv (D)∩C (D) : Hn−m+1 (u) = 0. We will show that u is maximal. Let’s
assume the opposite, that u is not maximal. Then for some domain G ⊂⊂ D there exists a function
v ∈ m− cv (D) : u|∂G ≥ v|∂G, but v (z0)− u (z0) = ε > 0 for some point z0 ∈ G.
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Approximating v infinitely smooth m−cv functions vj ↓ v. Then by Hartogs’ lemma we find j0 ∈ R
such that, vj0 |∂G < u|∂G + ε

2
.

Let’s compare the function u (z) with function vj0 (z) + δ ‖z‖2, where δ = ε

3·max{‖z‖2: z∈G} . For such

δ > 0, the set F =
{
u (z) + ε

2
< vj0 (z) + ρ (z)

}
is not empty and lies compactly in G.

Then according to the comparison principle (Theorem 4.4)

δn
∫
F

(
ddc ‖z‖2

)n
≤
∫
F

(
ddcv + δddc ‖z‖2

)n
≤
∫
F

(ddcu)
n

= 0,

which contradicts, what

∫
F

(
ddc ‖z‖2

)n
> 0. Theorem 4.3 and with this the main Theorem 4.2 are

proved. �
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Limit theorems for auto regression process
with random parameter v, 0 < v < 1
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Abstract. In this paper we obtain the criterion of weak convergence of the sequence of the sum
of the first n terms of the linear process {Xkn, k = 1, 2, ..., n; n = 1, 2, ...} with random coefficients{
vk, k ∈ N

}
, generated by the innovation sequence {ξkn, k ∈ Z} satisfying the condition of infinite

smallness to the limit distribution and as a consequence of this result we obtain the analog of the
Lindeberg-Feller theorem for the auto regression process with random parameter v, 0 < v < 1. In
addition, the strong law of large numbers and the law of iterated logarithm are proved.

Keywords: Auto regression process, linear process, central limit theorem, strong law of large
numbers, law of iterated logarithm.
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1. Introduction

{ξkn, k ∈ Z, k ≤ n, n ≥ 1}− a sequence of series of random variables satisfy the following condition
(A): for any ε > 0

P

{
sup
k∈Z
|ξkn| > ε

}
−−−→
n→∞

0.

Definition 1.1. If a series Xkn =
∑∞

i=0 ainξk−i,n converges with probability 1, then a sequence of
random variables {Xkn, k ∈ Z} is called a linear process with coefficients {akn, k ∈ Z, n ≥ 1} generated
by an innovation sequence {ξkn, k ∈ Z}.

Remark 1.1. If the conditions (A), Eξkn = 0, k ∈ Z are satisfied, then the series
∑∞

i=0 v
iξk−i,n

converges with probability 1, and therefore the linear process is defined quite correctly in this case.
The paper is devoted to the asymptotic analysis of the sum of the first n terms of a linear process

with random coefficients akn = vk, generated by an innovative sequence {ξkn}. By means of BN-
decomposition (Beveridge-Nilson distribution) we prove the criterion of weak convergence of the ran-
domly normalized sum of the linear process to the iterated limits and as a consequence of this result
we obtain the analog of the Lindeberg-Feller theorem for the auto regression process with a random
parameter v, 0 < v < 1. In addition, we prove the strong law of large numbers (SLLN) and the law
of iterated logarithm for a linear process associated with a 1 - order auto regression process with ran-
dom parameter v. Many known results obtained about the asymptotics of the distribution of the sum
distribution of a linear process can be found in the articles [ 4], [6 - 12]. In [2] a class of auto regression
processes of 1 -order with random coefficients with the form Xn − µ = ρn(Xn−1 − µ) + εn, n ∈ Z,
where, µ = EXn, {εn, n ∈ Z} white noise: a sequence of independent, identically distributed random
variables with mathematical expectations equal to zero and unit variance and {ρn} - a sequence of
independent, identically distributed random variables satisfying the condition sup

n
|ρn| < 1(with prob-

ability 1). Obviously, the auto regression process considered in this paper does not belong to the class
of processes considered in [2].

In this paper we consider a 1st-order auto regression process with a random parameter v:

Xn = vXn−1 + ξn, n ∈ Z, (1.1)

where v, 0 < v < 1 is a random variable (r.v.) independent of sequence {ξn, n ∈ Z}, {ξn, n ∈ Z} is
a sequence independent and identically distributed random variables with Eξ0 = 0, Eξ2

0 = σ2 < ∞.
There exists only one solution to equation (1.1) such that EXk = 0. This solution is of the form see
[2, 3]
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Xk =
∞∑
j=0

vjξk−j, k ∈ N. (1.2)

Many problems related to the asymptotics of the sum of n first terms of a linear process
Xk =

∑∞
j=0 ajnξk−j are solved using the following decomposition :

Lemma 1.1. If a series
∑∞

k=−∞ akn is absolutely convergent, then there is a decomposition of

Xt =

(
∞∑
k=0

akn

)
ξtn +

∞∑
j=1

γjξt−j,n −
∞∑
j=1

γjξt−j+1,n, (1.3)

where γj =
∑∞

k=j akn.

Equality (1.3) can be proved directly by comparing the coefficients ahead of the random variables
ξl; l = 0,±1,±2, ... in the expression of the random variable Xn. In particular, from the expansion
(1.3) we obtain the following expansion for the sum of the first n terms of the linear process:

Sn =
n∑
t=1

Xt =

(
∞∑
j=0

ajn

)
n∑
t=1

ξtn +
∞∑
j=0

γj (ξ1−j,n − ξn−j+1,n) . (1.4)

Decompositions (1.3) and (1.4) are commonly referred to in the literature as BN-decomposition.
The BN-decomposition was formally applied by Beveridge and Nelson (1981) in the study of cycle
fluctuations in commercial activities. Phillips and Solo (1992) [4] gave a general treatment of the
BN-decomposition and applied it to prove the CLT the SLLN and the invariance principle of the
law of iterated logarithm for linear processes generated by independent and identically distributed
innovations. Similar results, in the more general unequally distributed case are obtained in the work
of one of the authors (see [7]). In [8], an asymptotic analysis of the distribution of the sum of
linear processes with non-random coefficients satisfying the condition of infinite smallness (the transfer
theorem) to the limit distribution was carried out and, as a consequence of this result, an analog of
the Lindeberg-Feller theorem for linear processes generated by ϕ− mixing innovation sequence was
obtained. Almost all known results about asymptotics of linear processes follow from the main result
of this paper.

BN- decomposition in the special case when the linear process has the form (1.2) is defined by the
formula

Sn =

(
1

1− v

) n∑
t=1

ξtn +
∞∑
j=0

γj (ξ1−j,n − ξn−j+1,n) , (1.5)

where γj =
∑∞

k=j v
k.

2. Main Results

Before we formulate the main results of the paper, we prove the following main lemma.
Lemma 2.1. If condition (A) holds, then the following relations can be written:

∞∑
j=0

γj (ξ1−j,n − ξn−j+1,n) −→ 0 with probability 1. (2.1)

Proof. Using the formula of the sum of infinitely decreasing geometric progression, we obtain

∞∑
j=0

γj (ξ1−j,n − ξn−j+1n) =
∞∑
j=0

∞∑
k=j

vk(ξ1−j,n − ξn−j+1,n) =
∞∑
j=1

vj

1− v
(ξ1−j,n − ξn−j+1).
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It follows that, relation (2.1) is equivalent (see [5], p.269) to the statement: for any ε > 0, at n→∞

Pn(ε) := P

(
sup
k≥n

∣∣∣∣∣
∞∑
j=1

vj

1− v
(ξ1−j,k − ξk−j+1)

∣∣∣∣∣ ≥ ε
)
→ 0, n→∞.

There is inequality:

Pn(ε) ≤ 2P

(
∞∑
j=1

vj

1− v
sup
k∈Z
|ξkn| >

ε

2

)
= 2P

(
v

(1− v)2
sup
k
|ξkn| >

ε

2

)
.

Hence, since the value of v
(1−v)2 with probability 1 is bounded and independent of n, based on

condition (A), it follows that the relation in (2.1) of the lemma holds. The lemma is proved.
As a first application of the lemma 2.1, we prove the SLLN for an auto regression process with a

random parameter.

Theorem 2.1. (SLLN) The auto regression process of 1st-order with a random parameter v, 0 <
v < 1 obeys the SLLN, i.e. the following relation is true

Sn
n
−−−→
n→∞

0 with probability 1.

Proof. The auto regression process is a linear processXk =
∑∞

j=0 v
jξk−j where{ξj}−is a sequence

of independent identically distributed random variables with mathematical expectation equal to zero,
which satisfies the strong law of large numbers. Hence, and from lemma 2.1, by virtue of the decom-
position (1.5), the proof of the theorem follows.

We now formulate and prove the following main theorem.

Theorem 2.2 (transfer theorem). If the innovation process {ξkn, k ∈ Z} satisfies some limit
relation (in the sense of weak convergence, almost sure convergence, or convergence in probability),
then the random sum (1− v)Sn follows the same limit relation, and conversely.

Proof. According to decomposition (1.5), we have

(1− v)Sn =
n∑
t=1

ξtn + (1− v)
∞∑
j=0

γj (ξ1−j,n − ξn−j+1,n) (2.2)

since the second summand in the right-hand side of equality (2.2) tends to zero with probability 1
according to lemma 2.1, the sequence (1 − v)Sn has the same limiting relation as

∑n
k=1 ξkn and vice

versa.
It follows from theorem 2.2 that almost all asymptotic statements valid for the sum of the first n

terms of the sequence {ξkn} are also valid for the linear process Xk =
∑∞

j=0 v
jξk−j,n. Below we give

some of these statements.

Corollary 2.1 (analog of Kolmogorov’s theorem). Let Xk =
∑∞

j=0 v
jξk−j− be a linear process

generated by a sequence of independent and identically distributed random variables, and assume that
E|ξ1| <∞. Then the following relation holds:

(1− v)Sn
n

−−−→
n→∞

m with probability 1.

Here, m = Eξ1. is the mathematical expectation of the random variable.
The proof follows directly from theorem 2.2, by virtue of the well-known Kolmogorov theorem

valid for a sequence of independent identically distributed random variables with finite mathematical
expectations.

To prove the next result, the following result established in [13] will be required.
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Lemma 2.3. Let {ξn, n ≥ 1} be a sequence of independent and identically distributed random
variables with Eξ1 = 0, Eξ2

1 = 1. Then following relation hold

lim sup
n→∞

|
∑n

k=1 ξn|√
2n ln lnn

= 1 with probability 1.

Corollary 2.2. Let auto regression process of order 1 with random parameter v, 0 < v < 1
generated by a sequence of independent and identically distributed random variables with Eξ1 =
0, Eξ2

1 = 1. Then the is true

lim sup
n→∞

(1− v)Sn√
2n ln lnn

= 1 with probability 1.

The proof follows directly from Theorem 2.2 and Lemma 2.3.

Theorem 2.3. Let a linear process Xk =
∑∞

j=0 v
jξk−j,n is generated by a sequence of independent

random variables satisfying the condition (A). Then, for the following relation to take place

P

(
(1− v)

n∑
k=1

Xk ≤ x
)
⇒ F (x),

where F (x) — is an arbitrary distribution function, it is necessary and sufficient to fulfill the
condition (B) Fn(x)⇒ F (x), where Fn(x) = P (

∑n
k=1 ξkn ≤ x) .

Proof. Since the summand in the right-hand side of the expansion (2.2), according to lemma 2.1
converges to zero with probability 1 (hence also in probability), then, according to (2.2) the random
variables (1 − v)Sn and

∑n
k=1 ξkn are asymtotic identically distributed.The theorem has been proved.

From theorem 3, by virtue of the Lindeberg-Feller theorem, the following statement follows.

Corollary 2.3. Let a linear process Xk =
∑∞

j=0 v
jξk−j,n be generated by a sequence of independent

random variables with Eξkn = 0, Eξ2
kn = σ2

kn < ∞, satisfying condition (A). Then the sequence
(1− v)Sn/Bn, satisfies CLT if and only if Lindeberg’s condition is satisfied:

(L) 1
B2
n

∑n
k=1Eξ

2
knI {|ξkn| ≥ ε(Bn)} −−−→

n→∞
0,

for any positive ε, where B2
n =

∑n
k=1 σ

2
kn.
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